
Input/output (I/O)
Operating Systems



I/O and OS

• An operating system also controls all the computer’s I/O devices
• Disks, clocks, keyboards, displays, network interfaces

• Provides an interface between the devices and the rest of the system
• This interface should be the same for all devices (wherever possible)

• Device independent interfaces

• Issues commands to the devices, catch interrupts, and handle errors

• If I/O is not part of the OS, each application has to program that

2020 Based on Tanenbaum, Modern Operating Systems 3 e 2



I/O devices

• I/O devices can be roughly divided into two categories:

• Block devices
• Stores information in fixed-size blocks, each one with its own address

• All transfers are in units of one or more entire (consecutive) blocks

• Each block can be written or read independently

• Hard disks, Blu-ray discs, and USB sticks

• Character devices
• Delivers or accepts a stream of characters, without any block structure

• Not addressable and does not have any seek operation

• Printers, network interfaces, keyboards

2020 Based on Tanenbaum, Modern Operating Systems 3 e 3



I/O devices

• I/O devices cover a huge range 
in speeds

• Most of these devices tend to 
get faster as time goes on

• Software must cope with varying 
speeds of such devices

2020 Based on Tanenbaum, Modern Operating Systems 3 e 4



Device Controllers

• I/O devices consists of,
• A mechanical component – the device
• An electronic component – the device controller

• The device can usually be plugged into the controller card 

• Many controllers can handle multiple identical devices

• The interface between the controller and device can be a standard
• ANSI, IEEE, or ISO standard or a de facto one
• SATA, SCSI, USB, Thunderbolt, or FireWire (IEEE 1394) for disc drives

• Without device controllers, operating system should be programmed 
for low level operations of the device

2020 Based on Tanenbaum, Modern Operating Systems 3 e 5



Interrupts

• When an I/O device has finished 
the work given to it, it causes an 
interrupt.

• It does this by asserting a signal 
on a bus line that it has been 
assigned. 

• This signal is detected by the 
interrupt controller chip, which 
then decides what to do.

2020 Based on Tanenbaum, Modern Operating Systems 3 e

• The interrupt signal causes the 
CPU to stop what it is doing and 
start doing something else.

6



Precise Interrupts

• An interrupt that leaves the machine in 
a well-defined state is called a precise interrupt

• Such an interrupt has four properties:
1. The PC (Program Counter) is saved in a known place.

2. All instructions before the one pointed to by the PC have completed.

3. No instruction beyond the one pointed to by the PC has finished.

4. The execution state of the instruction pointed to by the PC is known.

• An interrupt that does not meet these requirements is called an imprecise 
interrupt. It is difficult for the operating system to figure out what has happened 
and what still has to happen.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 7



Memory-Mapped I/O

• Device controllers have registers – to command to perform actions 

• Devices have data buffers – where programs or OS can read/write

• Two approaches to manage this space:
a) address spaces for memory and I/O are different

b) map all the control registers into the memory space – Memory-Mapped I/O

2020 Based on Tanenbaum, Modern Operating Systems 3 e 8



Memory-Mapped I/O

• Modern personal computers is to have a dedicated highspeed 
memory bus, tailored to optimize memory performance

2020 Based on Tanenbaum, Modern Operating Systems 3 e 9



Direct Memory Access (DMA)

• Managing I/O access for CPU and loading data directly into memory

• Regulating transfers to multiple devices, often concurrently

2020 Based on Tanenbaum, Modern Operating Systems 3 e 10



Goals of the I/O Software

• Device independence
• We should be able to write programs that can access any I/O device without 

having to specify the device in advance.
• E.g. read a file on a hard disk, a DVD, or on a USB stick the same way

• Uniform naming
• The name of a file or a device should simply be a string or an integer and not 

depend on the device in any way.
• E.g. a USB stick can be mounted on top of the directory /usr/ast/backup

• Error handling
• Errors should be handled as close to the hardware as possible
• E.g. if the controller discovers a read error, it should try to correct the error

2020 Based on Tanenbaum, Modern Operating Systems 3 e 11



Goals of the I/O Software

• Synchronous (blocking) vs. asynchronous (interrupt-driven) transfers
• Blocking—after a read system call the program is automatically suspended until the 

data are available in the buffer.
• Asynchronous—CPU starts the transfer and goes off to do something else until the 

interrupt arrives.

• Buffering
• Used when data from/to device cannot be stored directly to final destination.
• Involves considerable copying and has a major impact on I/O performance.

• Sharable vs. dedicated devices
• Some I/O devices, such as disks, can be used by many users at the same time.
• Other devices, such as printers, have to be dedicated to a single user until that user is 

finished.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 12



Types of I/O methods

1. Programmed I/O

2. Interrupt-driven I/O

3. I/O using DMA

2020 Based on Tanenbaum, Modern Operating Systems 3 e 13



Programmed I/O

• CPU does all the work, simplest 
form of I/O

• Has the disadvantage of tying up 
CPU full time until all I/O is done
• Busy waiting / polling

• Fine if waiting is short or CPU 
has nothing else to do

• In most complex systems, CPU 
has other things to do

• E.g. 
• First the data are copied to the 

kernel. Then the operating system 
enters a tight loop, outputting the 
characters one at a time.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 14



Interrupt-Driven I/O

• Allow the CPU to do something else while waiting for I/O.

• Whenever CPU is waiting for some I/O, it can switch to another 
process, until an interrupt is received from I/O on completion.

• However, too frequent interrupts within each I/O request can waste 
CPU time.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 15



I/O Using DMA

• DMA controller manages the I/O request as a whole

• CPU is not interrupted within a I/O request

• Reduces the number of interrupts

• However, DMA controllers are usually much slower than main CPU. 
• So if CPU has nothing else to do, it may have to wait longer than if it did I/O 

on it’s own.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 16



I/O Software Layers

• Each layer has a well-defined function to perform.

• Each layer has a well-defined interface to the adjacent layers. 

• The functionality and interfaces can differ from system to system.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 17



Interrupt Handlers

• Interrupts are unavoidable in I/O

• Interrupt processing is complex, involving multiple steps

• It takes a considerable number of CPU instructions

• It is best if they can be hidden away from other parts of the OS

2020 Based on Tanenbaum, Modern Operating Systems 3 e 18



Interrupt Handlers

1. Save any registers (including the PSW) that 
have not already been saved by the interrupt 
hardware.

2. Set up a context for the interrupt-service 
procedure. Doing this may involve setting up 
the TLB, MMU and a page table.

3. Set up a stack for the interrupt service-
procedure.

4. Acknowledge the interrupt controller. If 
there is no centralized interrupt controller, 
reenable interrupts.

5. Copy the registers from where they were 
saved (possibly some stack) to the process 
table.

6. Run the interrupt-service procedure. It will 
extract information from the interrupting 
device controller’s registers.

7. Choose which process to run next. If the 
interrupt has caused some high-priority 
process that was blocked to become ready, it 
may be chosen to run now.

8. Set up the MMU context for the process to 
run next. Some TLB setup may also be 
needed.

9. Load the new process’ registers, including its 
PSW.

10. Start running the new process.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 19



Device Drivers

• The piece of program that translates 
between the programmer’s interface 
(read, write, seek) and the hardware 
interface is called a device driver.

• The device driver usually operates as 
part of the operating system kernel.

• In early OS (including first versions of 
Unix) all device drivers had to be 
compiled together with the kernel.

• Later systems allow device drivers to 
be loaded.

2020 Based on Tanenbaum, Modern Operating Systems 3 e

Logical positioning of device drivers. 
In reality all communication between drivers and 

device controllers goes over the bus.
20



Device Drivers

• A device driver has several functions.

• They accept abstract read and write requests from the device-
independent software above it and ensure that they are carried out.

• They also need to perform other functions such as initialising devices, 
manage power requirements and logging events.

• In a hot-pluggable system, devices can be added or removed while 
the computer is running.

• Driver must manage any events of sudden removal of devices.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 21



Device-Independent I/O Software

• Although some of the I/O 
software is device specific, other 
parts of it are device 
independent.

• Device-independent software 
performs the I/O functions that 
are common to all devices

• It provides a uniform interface to 
the user-level software.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 22



Uniform Interfacing for Device Drivers

a) If each device driver has a different interface to the operating system, every 
time a new device comes along, the operating system must be modified.

b) If all drivers have the same interface, new drives can be plugged in easily.
• OS defines a set of functions a driver must supply for a class of devices

• The device-independent software maps symbolic device names onto the proper driver

2020 Based on Tanenbaum, Modern Operating Systems 3 e 23



Buffering

a) Unbuffered input. 

b) Buffering in user space.

c) Buffering in the kernel followed by 
copying to user space.

d) Double buffering in the kernel.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 24



Error Reporting

• Errors are far more common in the context of I/O than in others.

• The operating system must handle errors as best it can.

• Device specific errors must be handled by device drivers.

• Programming errors
• This occurs when a process asks for something impossible, such as writing to 

an input device.

• Actual I/O errors
• For example, trying to write a disk block that has been damaged
• If the driver does not know what to do, it may pass the problem back up to 

device-independent software.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 25



Allocating and Releasing Dedicated Devices

• Some devices, such as printers, can be used only by a single process 
at any given moment.

• A simple way to handle these requests is to require processes to 
perform opens on the special files for devices directly.
• If the device is unavailable, the open fails. 

• Closing such a dedicated device then releases it.

• An alternative approach is to have special mechanisms for requesting 
and releasing dedicated devices.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 26



Device-Independent Block Size

• Different disks may have different sector sizes.

• It is up to the device-independent software to hide this fact and 
provide a uniform block size to higher layers.

• In this way, higher layers deal only with abstract devices that all use 
the same logical block size, independent of the physical sector size.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 27



User-Space I/O Software

• Most of the I/O software is within the operating system.

• A small portion of it consists of libraries linked together with user 
programs.

• System calls, including the I/O system calls, are normally made by 
library procedures.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 28



Spooling system

• Not all user-level I/O software consists of library procedures.

• Spooling is a way of dealing with dedicated I/O devices in a 
multiprogramming system.

• Uses a special process, called a daemon, and a special directory, 
called a spooling directory.

• E.g. Printing
• A process first generates the entire file to be printed and puts it in the 

spooling directory.

• Printer daemon prints the files in the directory.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 29



Summary of I/O Software

• Layers of the I/O system and the main functions of each layer.

2020 Based on Tanenbaum, Modern Operating Systems 3 e 30



Online Quiz via LMS

• June 20, Saturday, 12:00 AM – 11:59 PM

• 24 hour timeframe to complete

• 1 attempt only, 20 minutes per attempt

• 10 multiple choice questions, from randomised question bank

• Questions from:
• 04 Memory Management

• 05 File Systems

• 06 Input Output

• Students with access issues must contact PRIOR TO START OF QUIZ 
for alternative arrangements

2020 Based on Tanenbaum, Modern Operating Systems 3 e 31


