
Memory Management
Operating Systems

Why Memory Management?

• ‘‘Programs expand to fill the memory available to hold them.’’

• To provide a convenient abstraction for programming

• To allocate scarce memory resources among competing processes to
maximize performance with minimal overhead

• To utilise concepts of physical and virtual memory to increase
available memory

Based on Tanenbaum, Modern Operating Systems 3 e 2

Memory Management

• Memory hierarchy
• a few megabytes of very fast,

expensive, volatile cache memory

• a few gigabytes of medium-speed,
medium-priced, volatile main memory

• a few terabytes of slow, cheap,
non-volatile magnetic or
solid-state disk storage

• Memory manager
• part of the operating system that

manages the memory hierarchy

Based on Tanenbaum, Modern Operating Systems 3 e 3

No Memory Abstraction

• Only physical memory is used

• Only one process running at a time
a) Operating system at the bottom of

memory in RAM
• Early mainframes and minicomputers

b) Operating system in ROM at the
top of memory
• Some handheld computers and

embedded systems

c) Device drivers at the top of
memory in a ROM and the rest of
the system in RAM down below
• Early personal computers, with BIOS

on ROM

Based on Tanenbaum, Modern Operating Systems 3 e 4

Memory Abstraction – Address Spaces

• Solves two problems to allow multiple applications to be in memory
at the same time without interfering with each other
• Protection

• Relocation

• An address space is the set of addresses that a process can use to
address memory.

• Each process has its own address space, independent of those
belonging to other processes.

• E.g. Telephone numbers with extensions

Based on Tanenbaum, Modern Operating Systems 3 e 5

Base and Limit Registers

• Map each process’ address space onto a different
part of physical memory

• CPU with special hardware registers:
• Base register – loaded with the physical address where

its program begins in memory

• Limit register – loaded with the length of the program

• A disadvantage of relocation using base and limit
registers is the need to perform an addition and a
comparison on every memory reference.

Based on Tanenbaum, Modern Operating Systems 3 e 6

Swapping

• The total amount of RAM needed by all the processes is often much
more than can fit in memory.

• Swapping consists of bringing in each process in its entirety, running
it for a while, then putting it back on the disk.

Based on Tanenbaum, Modern Operating Systems 3 e 7

Virtual Memory

Based on Tanenbaum, Modern Operating Systems 3 e

• Need to run programs that are too large to fit in memory

• Need to have systems that can support multiple programs running

• Swapping is not an attractive option because of speed

• Virtual memory (VM) is abstraction that the OS will provide for managing
memory
• Enables a program to execute with less than its complete data in physical memory

• Many programs do not need all of their code and data at once (or ever) – no need to allocate
memory for it

• OS will adjust amount of memory allocated to a process based upon its behaviour

• VM requires hardware support and OS management algorithms to pull it off

8

Virtual Addresses

• Virtual addresses are independent of the actual physical location of
the data referenced

• OS determines location of data in physical memory

• Instructions executed by the CPU issue virtual addresses

• Virtual addresses are translated by hardware into physical addresses
(with help from OS)

• The set of virtual addresses that can be used by a process comprises
its virtual address space

Based on Tanenbaum, Modern Operating Systems 3 e 9

Fixed Partitions

• Physical memory is broken up into fixed partitions
• Hardware requirements: base register

• Physical address = virtual address + base register

• Base register loaded by OS when it switches to a
process

• Size of each partition is the same and fixed

• Advantages
• Easy to implement, fast context switch

• Problems
• Internal fragmentation: memory in a partition not used

by a process is not available to other processes

• Partition size: one size does not fit all (very large
processes?)

Based on Tanenbaum, Modern Operating Systems 3 e

P4’s Base

+Offset

Virtual Address

Physical Memory

Base Register P1

P2

P3

P5

P4

Internal
fragmentation

10

Variable Partitions

• Physical memory is broken up into variable sized
partitions
• Hardware requirements: base register and limit register

• Physical address = virtual address + base register

• Why do we need the limit register? Protection
• If (physical address > base + limit) then exception fault

• Advantages
• No internal fragmentation

• allocate just enough for process

• Problems
• External fragmentation

• job loading and unloading produces empty holes
scattered throughout memory

Based on Tanenbaum, Modern Operating Systems 3 e

P3’s Base

+Offset

Virtual Address

Base Register

P2

P3<

Protection Fault

Yes?

No?

P3’s Limit

Limit Register

P1

External
fragmentation

11

Paging

• The virtual address space consists of fixed-size units
called pages.

• The corresponding units in the physical memory are
called page frames.

• The page number is used as an index into the page
table, yielding the number of the page frame
corresponding to that virtual page.

• Every page begins on a multiple of 4096 and ends 4095
addresses higher, so 4K–8K really means 4096–8191
and 8K to 12K means 8192–12287.

Based on Tanenbaum, Modern Operating Systems 3 e 12

Paging

• How paging can solve fragmentation problems?
• External fragmentation: can be solved by re-mapping between VA and PA

• Internal fragmentation: can be solved if the page size is relatively small

Based on Tanenbaum, Modern Operating Systems 3 e 13

Memory Management Unit (MMU)

• When the program tries to access
address 0, virtual address 0 is sent to
the MMU.

• The MMU sees that this virtual address
falls in page 0 (0 to 4095), which
according to its mapping is page frame
2 (8192 to 12287).

• It thus transforms the address to 8192
and outputs address 8192 onto the
bus.

Based on Tanenbaum, Modern Operating Systems 3 e 14

Page address mapping

• E.g. virtual address 8196 (0010000000000100
in binary), being mapped using the MMU

• The incoming 16-bit virtual address is split into
a 4-bit page number and a 12-bit offset.

• With 4 bits for the page number, we can have
16 pages, and with 12 bits for the offset, we
can address all 4096 bytes within a page.

• Present/absent bit keeps track of which pages
are physically present in memory.

• The high-order 3 bits of the output register,
along with the 12-bit offset, form a 15-bit
physical address.

Based on Tanenbaum, Modern Operating Systems 3 e 15

Page Table Entry (PTE)

• 32 bits (common size)

• Page frame number

• Present/absent – which pages are physically present in memory

• Protection – what kinds of access are permitted (read/write/exec)

• Modified – whether or not the page has been written

• Reference – whether the page has been accessed

• Caching disabled – allows caching to be disabled for the page

Based on Tanenbaum, Modern Operating Systems 3 e 16

Paging Advantages

• Easy to allocate memory
• Memory comes from a free list of fixed size chunks

• Allocating a page is just removing it from the list

• External fragmentation not a problem

• Easy to swap out chunks of a program
• All chunks are the same size

• Use valid bit to detect references to swapped pages

• Pages are a convenient multiple of the disk block size

Based on Tanenbaum, Modern Operating Systems 3 e 17

Paging Limitations

• Process may not use memory in multiples of a page

• Memory reference overhead
• 2 references per address lookup (page table, then memory)

• Even more for two-level page tables!

• Solution – use a hardware cache of lookups

• Memory required to hold page table can be significant
• Need one PTE per page
• 32 bit address space w/ 4KB pages = 220 PTEs
• 4 bytes/PTE = 4MB/page table
• 25 processes = 100MB just for page tables!

• Remember: each process has its own page table!

• Solution – 2-level page tables

Based on Tanenbaum, Modern Operating Systems 3 e 18

TLB (Translation Lookaside Buffer)

• A small hardware device for mapping virtual
addresses to physical addresses without going
through the page table.

• When a virtual address is presented to the MMU
for translation, the hardware first checks to see if
its virtual page number is present in the TLB.

• When the virtual page number is not in the TLB.
The MMU detects the miss and does an ordinary
page table lookup.

Based on Tanenbaum, Modern Operating Systems 3 e 19

Multilevel Page Tables

• Single level page table size is too large
• E.g. 4KB page, 32 bit virtual address, 1M entries

per page table!

• A 32-bit virtual address is partitioned into a
10-bit PT1 field, a 10-bit PT2 field, and a 12-bit
Offset field.

• Since offsets are 12 bits, pages are 4 KB, and
there are a total of 220 of them.

Based on Tanenbaum, Modern Operating Systems 3 e 20

Page Replacement Algorithms

Based on Tanenbaum, Modern Operating Systems 3 e

• When a page fault occurs, the operating system has to choose a page
to evict (remove from memory) to make room for the incoming page.

21

Page Replacement Algorithms

• The optimal algorithm evicts the page that will be referenced furthest in the
future. Unfortunately, there is no way to determine which page this is, so in
practice this algorithm cannot be used. It is useful as a benchmark against which
other algorithms can be measured, however.

• The NRU (not recently used) algorithm divides pages into four classes depending
on the state of the R (reference) and M (modify) bits. A random page from the
lowest-numbered class is chosen. This algorithm is easy to implement, but it is
very crude.

• FIFO (first in first out) keeps track of the order in which pages were loaded into
memory by keeping them in a linked list. Removing the oldest page then becomes
trivial, but that page might still be in use, so FIFO is a bad choice.

• Second chance is a modification to FIFO that checks if a page is in use before
removing it. If it is, the page is spared. This modification greatly improves the
performance.

Based on Tanenbaum, Modern Operating Systems 3 e 22

Page Replacement Algorithms

• Clock is simply a different implementation of second chance. It has the same
performance properties, but takes a little less time to execute the algorithm.

• LRU is an excellent algorithm, but it cannot be implemented without special
hardware. If this hardware is not available, it cannot be used.

• NFU is a crude attempt to approximate LRU. It is not very good.

• Aging is a much better approximation to LRU and can be implemented efficiently.

• The working set algorithm gives reasonable performance, but it is somewhat
expensive to implement.

• WSClock is a variant that not only gives good performance but is also efficient to
implement.

Based on Tanenbaum, Modern Operating Systems 3 e 23

Second Chance Algorithm

• A simple modification to FIFO that
avoids the problem of throwing out a
heavily used page is to inspect the R
bit of the oldest page.

• If it is 0, the page is both old and
unused, so it is replaced immediately.

• If the R bit is 1, the bit is cleared, the
page is put onto the end of the list of
pages, and its load time is updated as
though it had just arrived in memory.

• Then the search continues.

Based on Tanenbaum, Modern Operating Systems 3 e 24

Segmentation

• Segmentation is a technique that partitions memory into logically
related data units
• Module, procedure, stack, data, file, etc.
• Virtual addresses become <segment #, offset>
• Units of memory from user’s perspective

• Natural extension of variable-sized partitions
• Variable-sized partitions = 1 segment/process
• Segmentation = many segments/process

• Hardware support
• Multiple base/limit pairs, one per segment (segment table)
• Segments named by #, used to index into table

Based on Tanenbaum, Modern Operating Systems 3 e 25

Segmentation

Based on Tanenbaum, Modern Operating Systems 3 e

limit base

+<

Protection Fault

Segment # Offset

Virtual Address

Segment Table

Yes?

No?

Physical Memory

26

Segmentation and Paging

• Can combine segmentation and paging
• The x86 supports segments and paging

• Use segments to manage logically related units
• Module, procedure, stack, file, data, etc.

• Segments vary in size, but usually large (multiple pages)

• Use pages to partition segments into fixed size chunks
• Makes segments easier to manage within physical memory

• Need to allocate page table entries only for those pieces of the segments that
have themselves been allocated

• Tends to be complex…

Based on Tanenbaum, Modern Operating Systems 3 e 27

Segmentation and Paging

Based on Tanenbaum, Modern Operating Systems 3 e 28

Segmentation and Paging

Based on Tanenbaum, Modern Operating Systems 3 e 29

Summary

• Virtual memory
• Processes use virtual addresses

• OS + hardware translates virtual address into physical addresses

• Various techniques
• Fixed partitions – easy to use, but internal fragmentation

• Variable partitions – more efficient, but external fragmentation

• Paging – use small, fixed size chunks, efficient for OS

• Segmentation – manage in chunks from user’s perspective

• Combine paging and segmentation to get benefits of both

Based on Tanenbaum, Modern Operating Systems 3 e 30

