Scheduling

Operating Systems

Who gets the CPU?

(CPU (horsepower))

\V\!hose turn is it?

Process 1 Process 2 Process 3

Based on Tanenbaum, Modern Operating Systems 3 e

b)

Process Behaviour

(a) | — —

/'

Long CPU burst

Short CPU burst

/

Waiting for 1/0

1 I N 1 1 |
b) [] LI LI LI LI 1 I L

Time
—
CPU-bound processes spend most of their time computing

1/0 bound processes spend most of their time waiting for I/O

Based on Tanenbaum, Modern Operating Systems 3 e

-

[]

-

Multiprogramming

* Overlapping I/O and CPU activities
e To increase CPU utilization and job throughput

* Previously covered the mechanisms of
e Context switching
* Process queues and process states

* But...
* which process (thread) to run, for how long, etc. — scheduling

Based on Tanenbaum, Modern Operating Systems 3 e

Scheduling

* Choosing which process to run next, when two or more of them are
simultaneously in the ready state

* Deciding which process should occupy the resource (CPU, disk, etc.)
* Done by scheduler using the scheduling algorithm

* Many of the same issues that apply to process scheduling also apply
to thread scheduling, although some are different.

* Jobs - schedulable entities (processes, threads)

When to schedule?

* wnend JOb exits ready queue

h A

* when a job blocks on I/0
* when time slice expired .

[§

I/O queue

* a hardware clock provides periodic

interrupts
 when a new job is created

child

* whether to run the parent or the
child

¢

executes

* when an |I/O interrupt occurs

* from an I/O device that has now
completed its work for a waiting job

Based on Tanenbaum, Modern Operating Systems 3 e

i 9

occurs

(cpu)
I/O request [+
time lslice
expired
fork a P
child b
wait for an
interrupt

A J

Performance Criteria

* Throughput

* number of jobs completed in unit time

* Turnaround time (elapse time)
 Amount of time to execute a particular process from the time it entered

* Waiting time
* Amount of time process has been waiting in ready queue

* Meeting deadlines
* Avoid bad consequences

P4 (3) P1 (6) P3 (7) P2 (8)

]]
3 9 16 24

Based on Tanenbaum, Modern Operating Systems 3 e

Scheduling Objectives

* Fair * Encourage good behavior
e Everyone is happy * Good boy/girl
* Priority e Support heavy load
* Some are more important e Degrade gracefully
e Efficiency * Adapt to different environment

* Make best use of equipment * Interactive, real-time, multi-media

Based on Tanenbaum, Modern Operating Systems 3 e

Categories of Scheduling Algorithms

1. Batch
» Periodic tasks — payroll, bills, interest calculation (at banks)
* No users impatiently waiting
» Possible to run for long time periods for each process without switching

2. Interactive
* For environments with interactive users — personal computing, servers
* One process cannot be hogging the CPU and denying service to the others

3. Real-time
* Only programs that are intended to further the application at hand
* Processes may not run for long and usually do their work and block quickly
* So, it’s okay to let them finish

Based on Tanenbaum, Modern Operating Systems 3 e

Preemptive vs. Non-preemptive

* Non-preemptive scheduling
* The running process keeps the CPU until it voluntarily gives up the CPU

* Preemptive scheduling
* The running process can be interrupted and must release the CPU

Based on Tanenbaum, Modern Operating Systems 3 e

10

Scheduling Algorithm Goals

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Based on Tanenbaum, Modern Operating Systems 3 e

11

Scheduling Algorithms

e Batch Systems
 First-Come, First-Served (FCFS)
e Short Job First (SJF)

* Interactive Systems
* Round-Robin Scheduling
* Priority Scheduling
* Multi-Queue & Multi-Level Feedback

e Real-time Systems
* Earliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 12

First-Come, First-Served (FCFS)

» “Real-world” scheduling of people in lines (e.g., supermarket)
* A single queue of ready jobs

* Jobs are scheduled in order of arrival to ready queue

* Typically non-preemptive (no context switching at market)

* Jobs treated equally, no starvation.

* When the running process blocks, the first process on the queue is
run next.

* When a blocked process becomes ready, like a newly arrived job, it is
put on the end of the queue, behind all waiting processes.

First-Come, First-Served — Example

Process Duration Order Arrival Time
P1 24 1 0
P2 3 2 0
P3 - 3 0
P1(24) P2 (3) P3(4)
0_242? |

P1 waiting time: 0 » o
P2 waiting time: 24 The average waiting time:

P3 waiting time: 27 (0+24+27)13 =17

Based on Tanenbaum, Modern Operating Systems 3 e

14

First-Come, First-Served — Problems

* Average waiting time can be large
* If small jobs wait behind long ones (high turnaround time)
* Non-preemptive
* You're stuck behind someone with a cart, when you only have two items

e Solution? P
* Express lane (10 items or less) Rl %

|
iy

— = -Ir_.‘

.;I.-;! \ o Iq}.}
& OriginalAtisty =
Reproductionights GBtainablS e
wearw CartoonStock.com

Based on Tanenbaum, Modern Operating Systems 3 e

Shortest Job First (SJF)

* Choose the job with the smallest expected duration first
* Person with smallest number of items to buy

* Requirement
* the job duration needs to be known in advance

e Used in Batch Systems

* Optimal for Average Waiting Time if all jobs are available
simultaneously

Based on Tanenbaum, Modern Operating Systems 3 e

16

Shortest Job First — Example

Process Duration Order Arrival Time
P1 6 1 0
P2 8 2 0
P3 I 3 0
P4 3 4 0
P4 (3) P1 (6) P3 (7) P2 (8)
ﬁ 16_24

P4 waiting time: O
P1 waiting time: 3
P3 waiting time: 9

P2 waitina time: 16

The total time Is: 24
The average waiting time (AWT):
(0+3+9+16)4 =7

Based on Tanenbaum, Modern Operating Systems 3 e 17

FCFS vs. SJF

Process Duration Order Arrival Time
P1 6 1 0
P2 8 2 0
P3 I 3 0
P4 3 4 0
P1 (6) P2 (8) P3 (7) P4 (3)
*4 oF o

The total time is the same (why?)
L0 The average waiting time (AWT):
s waiting fme 14 (0+6+14+21)/4 = 10.25
P4 waiting time: 24 oo w(€OMparingto.f). L

P1 waiting time: 0

Shortest Job First — Problems

* Starvation
* ajob is waiting forever

* All jobs must be available at start

 Suited for batch systems Process | Duration | Order | Arrival Time
P1 10 1 0
P2 2 2 2
P1(10) P2 (2)

2 (p2 arrives)

10

12

P1 waiting time: 0 The average waiting time (AWT):

P2 waiting time: 8 (0+8)/2 =

Based on Tanenbaum, Modern Operating Systems 3 e

4

19

Scheduling Algorithms

e Batch Systems
* First-Come, First-Served (FCFS)
e Short Job First (SJF)

* Interactive Systems
* Round-Robin Scheduling
* Priority Scheduling
* Multi-Queue & Multi-Level Feedback

e Real-time Systems
* Earliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 20

Round-Robin Scheduling

* One of the oldest, simplest,
most commonly used scheduling
algorithm

* Select process/thread from
ready queue in a round-robin
fashion (take turns)

xx”lm
? w .k;:;.l.xt.‘»
Hh
Mt (i
7

Preemplion

Based on Tanenbaum, Modern Operating Systems 3 e

21

Round-Robin Scheduling — Example

Process Duration Order Amval Time
P1 3 1 0
P2 4 2 0
P3 3 3 0

Suppose time quantum is: 1 unit, P1, P2 & P3 never block

P1 P2 P3 P1 P2 P3 P1 P2 P3P2

J 10

P1 waiting time: 4 . :
P2 waiting time: 6 The average waiting time (AWT):

P3 waiting time" 6 (4+6+6)/3 = 5.33

Based on Tanenbaum, Modern Operating Systems 3 e

22

Round-Robin Scheduling — Problems

* Time slice too large
* FIFO behavior
* Poor response to short interactive requests

* Time slice too small

* Too many context switches (overheads)
* |nefficient CPU utilization

* A quantum around 20-50 msec is often a reasonable compromise.

Based on Tanenbaum, Modern Operating Systems 3 e

23

Priority Scheduling

* Not all processes are equally important

* Need to consider external factors

* Email checking less priority than displaying video

Queue
headers

Priority 4

Runable processes

Al

Priority 3

Priority 2

Priority 1

Based on Tanenbaum, Modern Operating Systems 3 e

(Highest priority)

(Lowest priority)

24

Multiple-level feedback queues (MLFQ)

* Scheduling algorithms can be combined
* Have multiple queues
* Use a different algorithm among queues
* Move processes among queues

No Timeslice, Preemptable 3

* Multiple queues representing different G
job types
* Interactive, CPU-bound, batch, etc.

LT
htm--lu......m.“".
-

* Queues have priorities Migrate CPU-Bound dobs. ™" "=trm,

* Jobs can move among queues based upon
execution history N

Timeslice = 8 ms ‘1"“"!’

Based on Tanenbaum, Modern Operating Systems 3 e 25

Scheduling Algorithms

e Batch Systems
* First-Come, First-Served (FCFS)
* Short Job First (SJF)

* Interactive Systems
* Round-Robin Scheduling
* Priority Scheduling
* Multi-Queue & Multi-Level Feedback

* Real-time Systems
* Earliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 26

P1

P3

AT e e e e

Earliest Deadline First (EDF)

* Each job has an arrival time and a deadline to finish
e Assignments, exams*

* Always pick the job with the earliest deadline to run

O11| 2113|4561 7]|8]|9|10]111|12|13|14)115]|16|17|18|19|20|2122|23|24|25]|26]|27]|28

A I Ay A

T

Thread Scheduling

e Two levels of threads
e User-level threads
e Kernel-level threads

e User-level threads
* Kernel picks the process
* Scheduler inside process picks thread

e Kernel-level threads

* Kernel picks a particular thread to run
e Requires a full context switch

Based on Tanenbaum, Modern Operating Systems 3 e

28

Thread Scheduling

Process A Process B Process A Process B
Order in which

threads run \

Y ¥ Y Y
2. Run-time 1 2 3 13
system
picks a —
thread — =
V v |
L1. Kernel picks a process \1. Kernel picks a thread

A2, A3

Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1,
2, B2, A3, B3

Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2,

(El) Based on Tanenbaum, Modern Operating Systems 3 e (b) 29

Scheduling Summary

e Scheduler is the module that gets invoked when a context switch
needs to happen

* Scheduling algorithm determines which process runs and where
processes are placed on queues

* Scheduling algorithms have many goals
 Utilization, throughput, wait time, response time, etc.

* Various algorithms to meet these goals
* FCFS/FIFO, SJF, RR, Priority

e Can combine algorithms
* Multiple-level feedback queues

