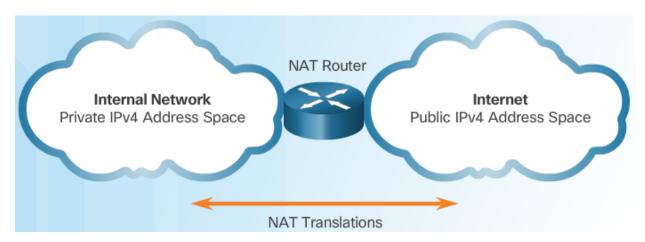
NAT for IPv4

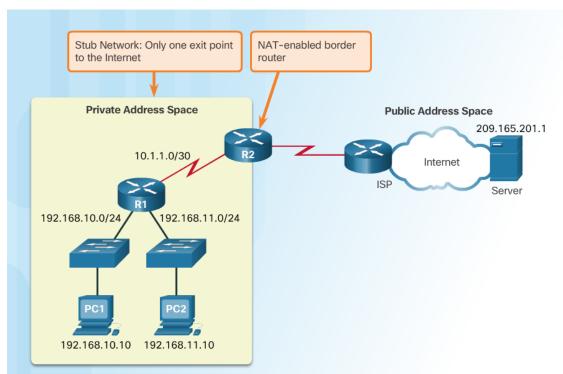
Faculty of Technology University of Sri Jayewardenepura 2020


1

IPv4 Private Address Space

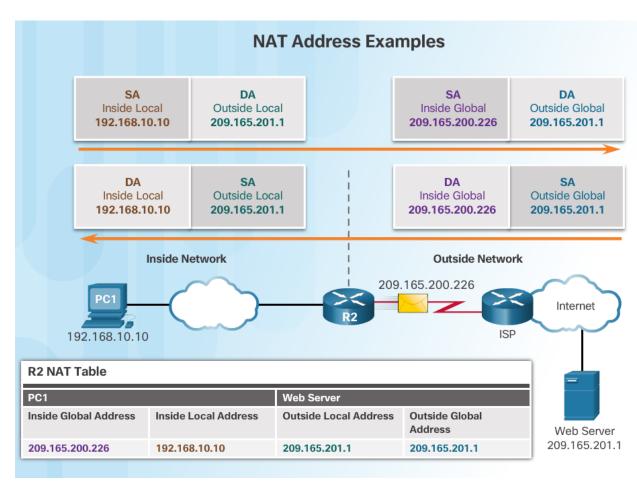
- Private IP addresses are used within an organization and home networks.
- Private IP addresses cannot be routed over the Internet.
- NAT is used to translate private IP addresses to public addresses that can be routed over the Internet.
- One public IPv4 address can be used for thousands of devices that have private IP addresses.

Private Internet Addresses are Defined in RFC 1918

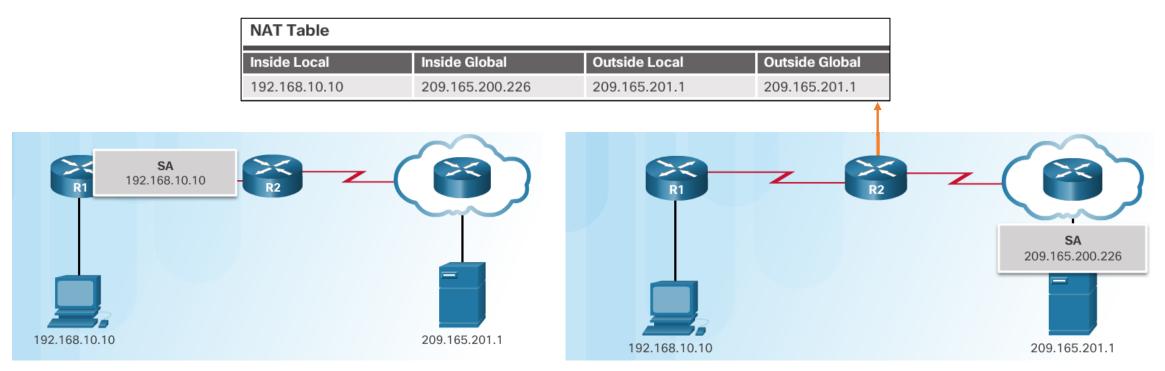

Class	RFC 1918 Internal Address Range	CIDR Prefix
А	10.0.0.0 - 10.255.255.255	10.0.0/8
В	172.16.0.0 - 172.31.255.255	172.16.0.0/12
С	192.168.0.0 - 192.168.255.255	192.168.0.0/16

2

What is NAT?

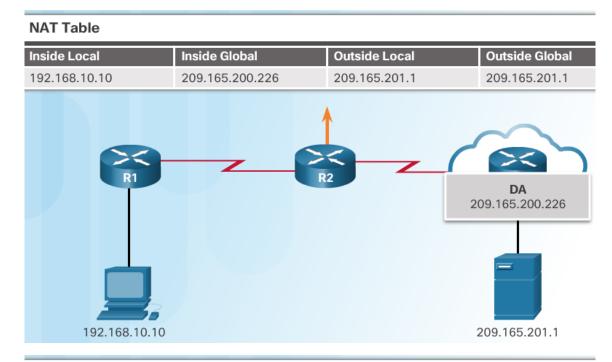

- Private IP addresses cannot be routed over the Internet.
- NAT is used to translate private IP addresses used inside a company to public addresses that can be routed over the Internet.
- NAT hides internal IPv4 addresses from outside networks.
- A NAT-enabled router can be configured with a public IPv4 address.
- A NAT-enabled router can be configured with multiple public IPv4 addresses to be used in a pool or NAT pool for internal devices configured with private addresses.

NAT is enabled on one device (normally the border or edge router)


NAT Terminology

- Four types of addresses:
 - Inside address
 - address of the company network device that is being translated by NAT
 - Outside address
 - IP address of the destination device
 - Local address
 - any address that appears on the inside portion of the network
 - Global address
 - any address that appears on the outside portion of the network

How NAT Works


1. The private (internal) IP address gets translated to a public IP address used to reach the external server.

How NAT Works

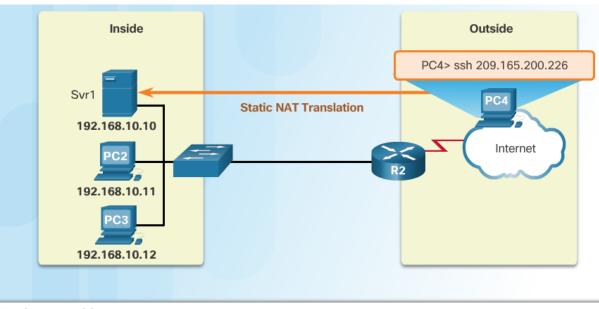
2. The translated public address is used by the server to send the requested information to the device that actually has a private IP address assigned to it.

3. The NAT-enabled router consults the routing table to see what private address requested the data.

 Inside Local
 Inside Global
 Outside Local
 Outside Global

 192.168.10.10
 209.165.200.226
 209.165.201.1
 209.165.201.1

 192.168.10.10
 192.168.10.10
 192.168.10.10
 192.168.10.10

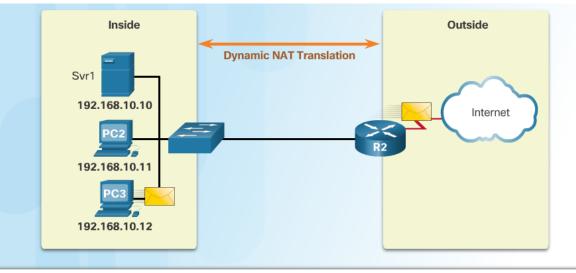

 Based on Routing and Switching Essentials v6.010 2018 18%
 001.10
 192.168.10.10
 192.168.10.10

 Based on Routing and Switching Academy Program
 001.10
 001.165.201.1
 100.165.201.1

NAT Table

Static NAT

- Static address translation (static NAT) assigns one public IP address to one private IP address
- Commonly used for servers that need to be accessed by external devices or for devices that must be accessible by authorized personnel when offsite
- One-to-one address mapping between local and global addresses

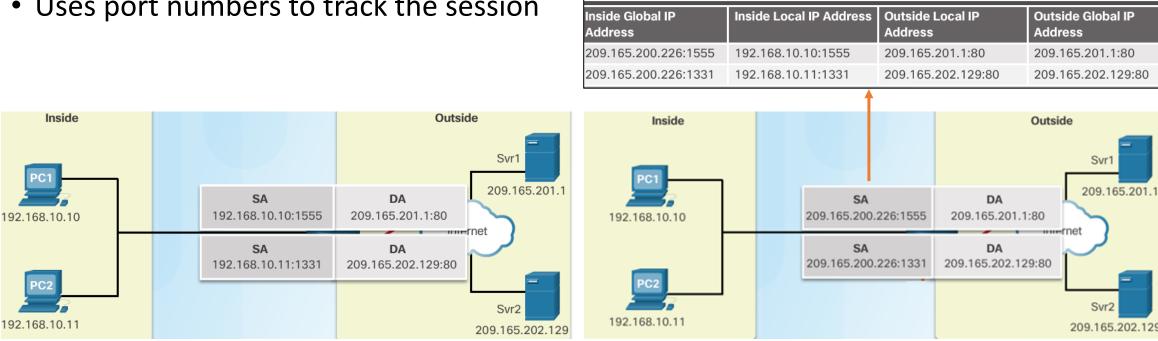


Static NAT Table

Inside Local Address	Inside Global Address - Addresses reachable via R2	
192.168.10.10	209.165.200.226	
192.168.10.11	209.165.200.227	
192.168.10.12	209.165.200.228	

Dynamic NAT

- Dynamic NAT assigns a public IP address from a pool of addresses to each packet that originates from a device that has a private IP address assigned when that packet is destined to a network outside the company.
- Addresses are assigned on a firstcome, first serve basis
- The number of internal devices that can transmit outside the company is limited to the number of public IP addresses in the pool.

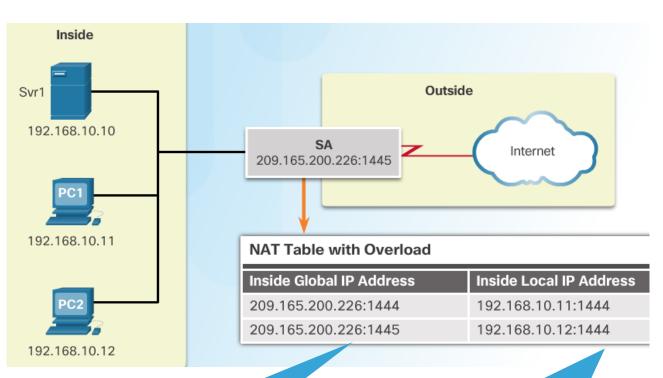


IPv4 NAT Pool

Inside Local Address	Inside Global Address Pool - Addresses reachable via R2	
192.168.10.12	209.165.200.226	
Available	209.165.200.227	
Available	209.165.200.228	
Available	209.165.200.229	
Available	209.165.200.230	

Port Address Translation (PAT)

- PAT (otherwise known as NAT overload) can use one public IPv4 address to allow thousand of private IPv4 addresses to communicate with outside network devices.
- Uses port numbers to track the session



NAT Table with Overload

Based on Routing and Switching Essentials v6.0 - CCNA R&S © Cisco Networking Academy Program

Next Available Port

- PAT tries to preserve the original source port number.
 - If that port number is already use, PAT will assign the first available port number for the appropriate port group
 - 0 511
 - 512 1023
 - 1024 65,535
 - When there are no more port numbers available, PAT moves to the next public IP address in the pool if there is one.

2. Notice how PAT uses the same public address, but two different port numbers.

1. Notice how traffic is from two different internal devices using the same port number.

Comparing NAT and PAT

- Static NAT translates address on a 1:1 basis
- PAT uses port numbers so that one public address can be used for multiple privately addressed devices
- PAT can still function with a protocol such as ICMP that does not use TCP or UDP

NAT

Inside Global Address Pool	Inside Local Address
209.165.200.226	192.168.10.10
209.165.200.227	192.168.10.11
209.165.200.228	192.168.10.12
209.165.200.229	192.168.10.13

PAT

Inside Global Address	Inside Local Address
209.165.200.226:1444	192.168.10.10:1444
209.165.200.226:1445	192.168.10.11:1444
209.165.200.226:1555	192.168.10.12:1555
209.165.200.226:1556	192.168.10.13:1555

Advantages of NAT

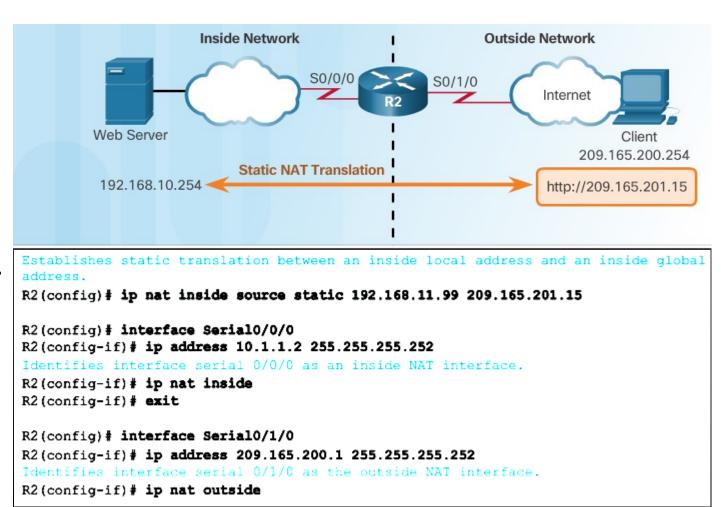
- Conserves the legally registered addressing scheme
 - Every company can use the private IP addresses
- Increases the flexibility of connections to the public network
 - Multiple NAT pools, backup pools, and load-balancing across NAT pools
- Provides consistency for internal network addressing schemes
 - Do not have to readdress the network if a new ISP or public IP address is assigned
- Provides network security
 - Hides user private IPv4 addresses

Disadvantages of NAT

- Performance is degraded.
 - The NAT-enabled border device must track and process each session destined for an external network.
- End-to-end functionality is degraded.
 - Translation of each IPv4 address within the packet headers takes time.
- End-to-end IP traceability is lost.
 - Some applications require end-to-end addressing and cannot be used with NAT.
 - Static NAT mappings can sometimes be used.
 - Troubleshooting can be more challenging.
- Tunneling becomes more complicated.
- Initiating TCP connections can be disrupted.

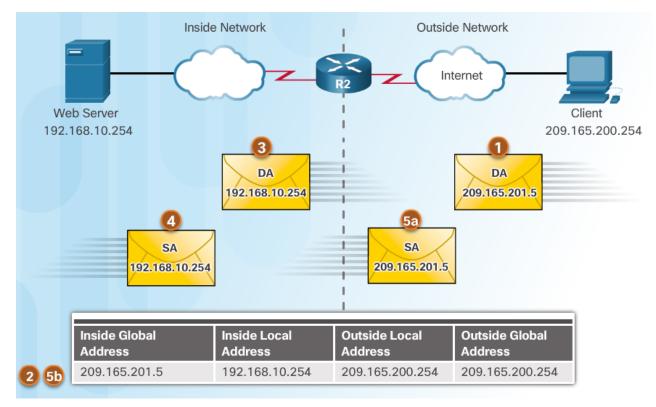
Configure NAT

Configuring Static NAT


Step	Action	Notes
1	Establish static translation between an inside local address and an inside global address. Router(config)# ip nat inside source static local-ip global-ip	Enter the no ip nat inside source static global configuration mode command to remove the dynamic source translation.
2	Specify the inside interface. Router(config) # interface type number	Enter the interface command. The CLI prompt changes from (config) # to (config-if) #.
3	Mark the interface as connected to the inside. Router(config-if) # ip nat inside	Inside Network Outside Network
4	Exit interface configuration mode. Router(config-if) # exit	Web Server Client
5	Specify the outside interface. Router(config) # interface type number	Static NAT Translation 209.165.200.2 192.168.10.254 http://209.165.201.
6	Mark the interface as connected to the outside. Router (config-if) # ip nat outside	Static NAT Table Inside Global Address

209.165.201.5

192.168.10.254


Configuring Static NAT

- Any interface on the border router that is on the inside network must be configured with the **ip nat inside** command.
- This is a common mistake for those new to NAT.

Analyzing Static NAT

- 1. Client opens a web browser for a connection to a web server.
- 2. R2 receives the packet on the outside interface and checks the NAT table.
- 3. R2 replaces the inside global address with inside local address of 192.168.10.254 (the server's address).
- 4. Web server responds to the client.
- 5. (a) R2 receives the packet from the server on the inside address.
 (b) R2 checks NAT table and translates the source address to the inside global address of 209165.201.5 and forwards the packet.
- 6. The client receives the packet.

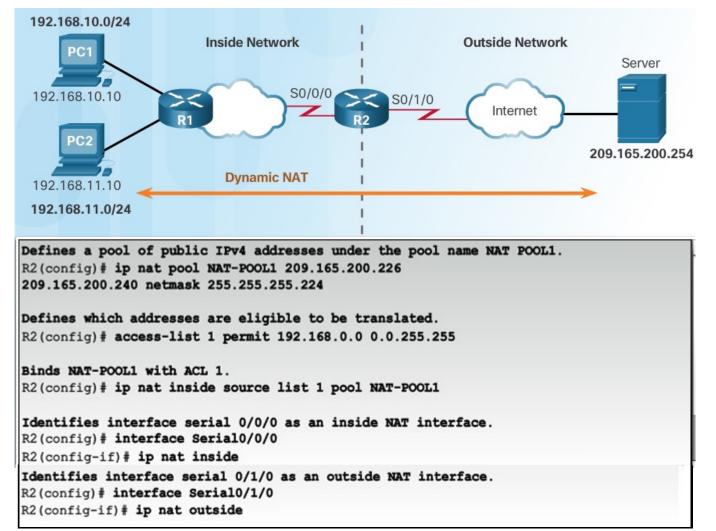
Verifying Static NAT

2# show ip nat tran	slations		
-	Inside local 192.168.10.254	Outside local	Outside global
he static translation during	g an active session.		
2# show ip nat trans	slations		
209.165.201.5 209.165.201.5	Inside local 192.168.10.254 192.168.10.254	Outside local 209.165.200.254	Outside global 209.165.200.254
2#			
Impo	ortant command	ds:	
• s	how ip nat trar	nslations	
• s	how ip nat stat	istics	

R2# clear ip nat statistics

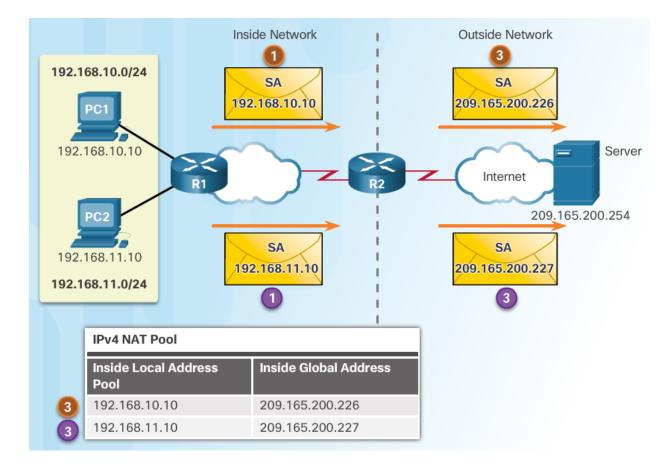
R2# show ip nat statistics Total active translations: 1 (1 static, 0 dynamic; 0 extended) Peak translations: 0 Outside interfaces: Serial0/0/1 Inside interfaces: Serial0/0/0 Hits: 0 Misses: 0 <output omitted>

Client PC establishes a session with the web server

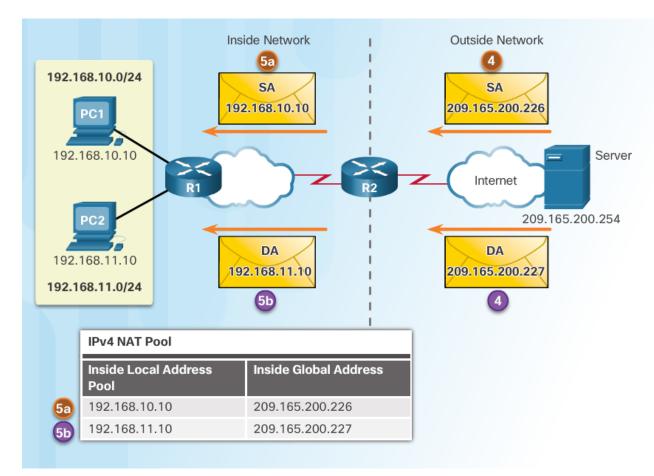

R2# show ip nat statistics

```
Total active translations: 1 (1 static, 0 dynamic; 0 extended)
Peak translations: 2, occurred 00:00:14 ago
Outside interfaces:
   Serial0/1/0
Inside interfaces:
   Serial0/0/0
Hits: 5 Misses: 0
<output omitted>
```

Configuring Dynamic NAT


Step 1	Define a pool of global addresses to be used for translation. ip nat pool name start-ip end-ip {netmask netmask prefix-length prefix-length}
Step 2	Configure a standard access list permitting the addresses that should be translated. access-list access-list-number permit source [source-wildcard]
Step 3	Establish dynamic source translation, specifying the access list and pool defined in prior steps. ip nat inside source list access-list-number pool name
Step 4	Identify the inside interface. interface type number ip nat inside
Step 5	Identify the outside interface. interface type number ip nat outside

Configuring Dynamic NAT


Analyzing Dynamic NAT

- 1. PC1 and PC2 open a web browser for a connection to a web server.
- 2. R2 receives the packets on the inside interface and checks if translation should be performed (via an ACL). R2 assigns a global address from the NAT pool and creates a NAT table entry for both packets.
- 3. R2 replaces the inside local source address on each packet with the translated inside global address from the pool.

Analyzing Dynamic NAT

- 4. The server responds to PC1 using the destination address of 209.165.200.226 (the NAT-assigned address) and to PC2 using the destination address of 209.165.200.227.
- 5. (a and b) R2 looks up each received packet and forwards based on the private IP address found in the NAT table for each of the destination addresses.

Verifying Dynamic NAT

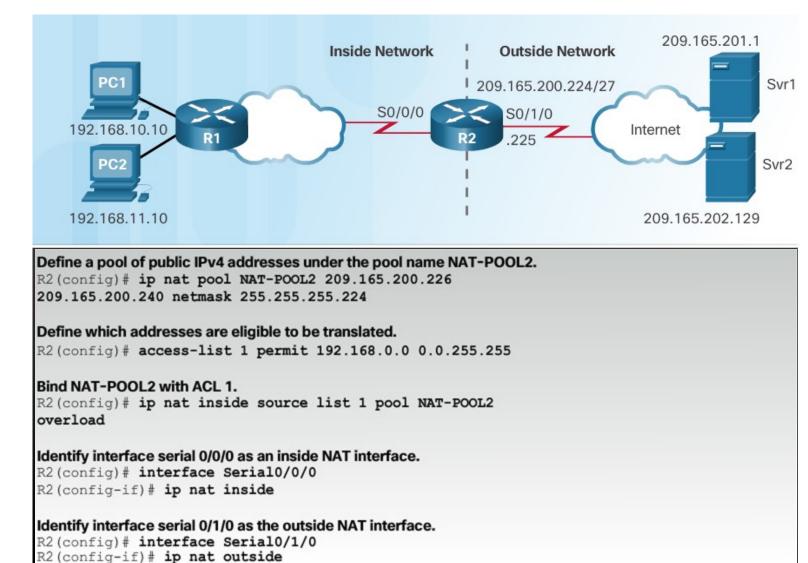
```
R2# show ip nat translations
Pro Inside global
                    Inside local Outside local Outside global
--- 209.165.200.226 192.168.10.10 ---
--- 209.165.200.227 192.168.11.10 ---
R2#
R2# show ip nat translations verbose
Pro Inside global
                    Inside local Outside local Outside global
--- 209.165.200.226 192.168.10.10 ---
    create 00:17:25, use 00:01:54 timeout:86400000, left 23:58:03
   flags:
none, use count: 0, entry-id: 32, 1c entries: 0
--- 209.165.200.227 192.168.11.10
    create 00:17:22, use 00:01:51 timeout:86400000, left 23:58:08
   flags:
none, use count: 0, entry-id: 34, 1c entries: 0
R2#
```

Command	Description
clear ip nat translation *	Clears all dynamic address translation entries from the NAT translation table.
clear ip nat translation inside global-ip local-ip [outside local-ip global-ip]	Clear a simple dynamic translation entry containing an inside translation or both inside and outside translation.
clear ip nat translation protocol inside global-ip global-port local-ip local-port [outside local-ip local port global-ip global-port]	Clears an extended dynamic translation entry.

R2# clear ip nat statistics PC1 and PC2 establish sessions with the server R2# show ip nat statistics Total active translations: 2 (0 static, 2 dynamic; 0 extended) Peak translations: 6, occurred 00:27:07 ago Outside interfaces: Serial0/0/1 Inside interfaces: Seria10/1/0 Hits: 24 Misses: 0 CEF Translated packets: 24, CEF Punted packets: 0 Expired translations: 4 Dynamic mappings: -- Inside Source [Id: 1] access-list 1 pool NAT-POOL1 refcount 2 pool NAT-POOL1: netmask 255.255.255.224 start 209.165.200.226 end 209.165.200.240 type generic, total addresses 15, allocated 2 (13%), misses 0

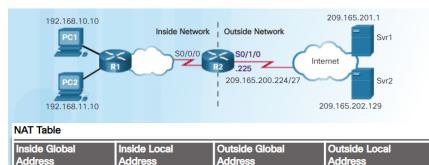
Configuring PAT: Address Pool

The pool contains the public addresses.


The ACL defines which private IP addresses gets translated.

The **ip nat inside source list** *acl#* **pool** *name* **overload** command ties Step 1 with Step 2.

The **overload** command is what allows the router to track port numbers (and do PAT instead of dynamic NAT).

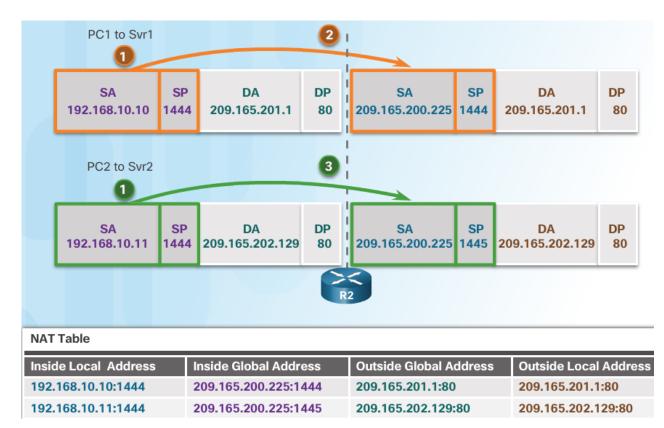

Step 1	Define a pool of global addresses to be used for overload translation.
	<pre>ip nat pool name start-ip end-ip {netmask netmask prefix-length prefix-length</pre>
Step 2	Define a standard access list permitting the addresses that should be translated.
	access-list access-list-number permit source [source-wildcard]
Step 3	Establish overload translation, specifying the access list and pool defined in prior steps.
	<pre>ip nat inside source list access-list-number pool name overload</pre>
Step 4	Identify the inside interface.
	interface type number ip nat inside
Step 5	Identify the outside interface.
	interface type number ip nat outside

Configuring PAT: Address Pool

Configuring PAT: Single Address

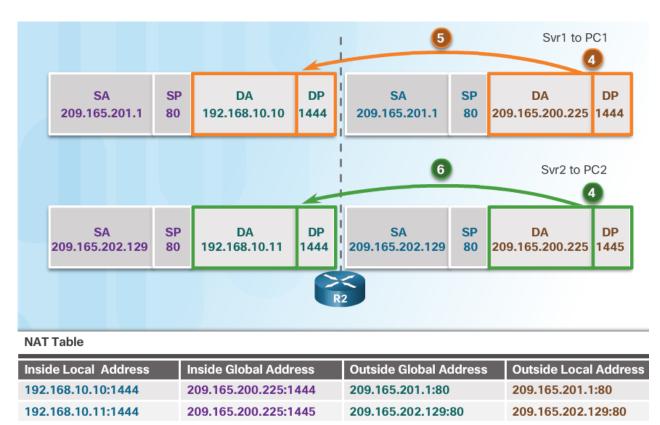
 When a public address is assigned to the external interface on the border router, that public address can be used for PAT and translate internal private IP addresses to the public IP address.

209.165.201.1:80


		209.165.200.225:1444 192.168.10.10:1444 209.165.201.1:80 209.165.201.1:80 209.165.200.225:1445 192.168.11.10:1444 209.165.202.129:80 209.165.202.129:80
Step 1	Define a standard access list permitting the addresses that should be translated.	Still need an ACL to define which private IP
	access-list access-list-number permit source [source-wildcard]	addresses gets translated.
Step 2	Establish dynamic source translation, specifying the ACL, exit interface and overload options. ip nat inside source list access-list-number interface type number	Instead of associating an ACL with a pool, the ACL is associated with an interface that
	overload	has a public IP address assigned.
Step 3	Identify the inside interface.	
	interface type number ip nat inside	The overload command is always needed for PAT.
Step 4	Identify the outside interface.	
	interface type number ip nat outside	

2020

209.165.201.1:80


Analyzing PAT

- 1. PC1 and PC2 open a web browser for a connection to a web server.
- 2. R2 receives the packets on the inside interface and checks if translation should be performed (via an ACL). R2 assigns the IP address of the outside interface, adds a port number, and creates a NAT table entry for both packets.
- 3. R2 replaces the inside local source address on each packet with the translated inside global address.

Analyzing PAT

- 4. Each server responds to PC1 and PC2 using the destination address of the public address assigned to the external interface on the border router.
- 5. R2 looks up the received packet and forwards to PC1 because that is the private IP address found in the NAT table for the destination address and port number.
- 6. R2 looks up the received packet and forwards to PC2 because that is the private IP address found in the NAT table for the destination address and port number.

Verifying PAT

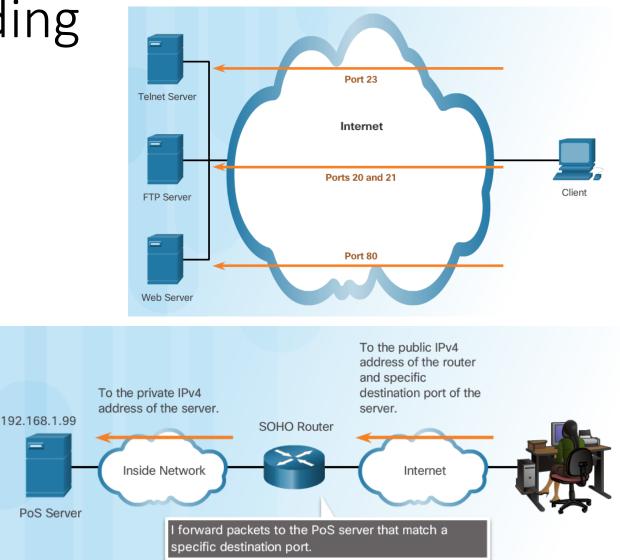
R2# show ip nat translations

 Pro Inside global
 Inside local
 Outside local
 Outside global

 tcp 209.165.200.226:51839
 192.168.10.10:51839
 209.165.201.1:80
 209.165.201.1:80

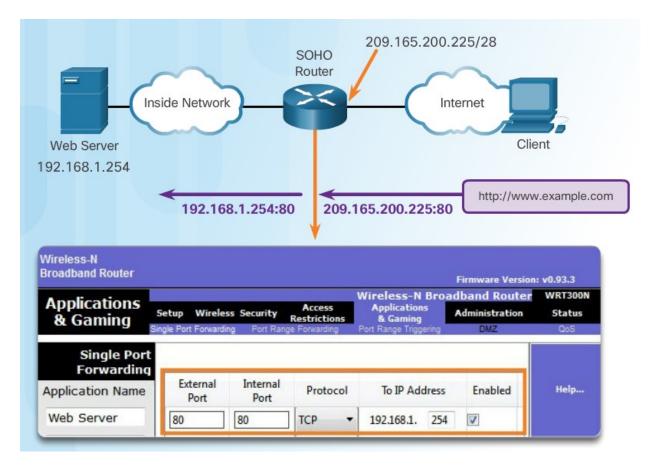
 tcp 209.165.200.226:42558
 192.168.11.10:42558
 209.165.202.129:80
 209.165.202.129:80

 R2#
 192.168.11.10:42558
 192.168.11.10:42558
 192.165.202.129:80

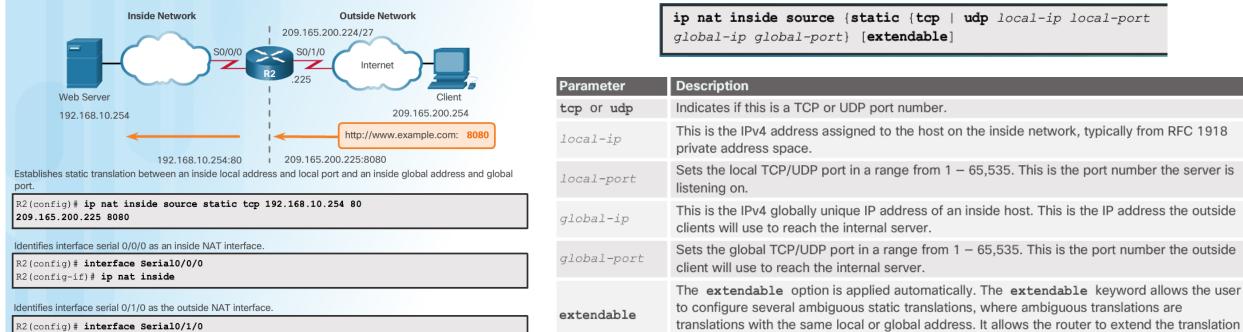

R2# clear ip nat statistics

R2#

R2# show ip nat statistics Total active translations: 2 (0 static, 2 dynamic; 2 extended) Peak translations: 2, occurred 00:00:05 ago Outside interfaces: Serial0/0/1 Inside interfaces: Serial0/1/0 Hits: 4 Misses: 0 CEF Translated packets: 4, CEF Punted packets: 0 Expired translations: 0 Dynamic mappings: -- Inside Source [Id: 3] access-list 1 pool NAT-POOL2 refcount 2 pool NAT-POOL2: netmask 255.255.255.224 start 209.165.200.226 end 209.165.200.240 type generic, total addresses 15, allocated 1 (6%), misses 0 Total doors: 0 Appl doors: 0 Normal doors: 0 Oueued Packets: 0


Configure Port Forwarding

- Port forwarding allows an external device to reach a device on a specific port number and the device is located on an internal (private) network.
 - Required for some peer-to-peer file-sharing programs and operations such as web serving and outgoing FTP
 - Solves the problem of NAT only allowing translations for traffic destined for external networks at the request of internal devices.

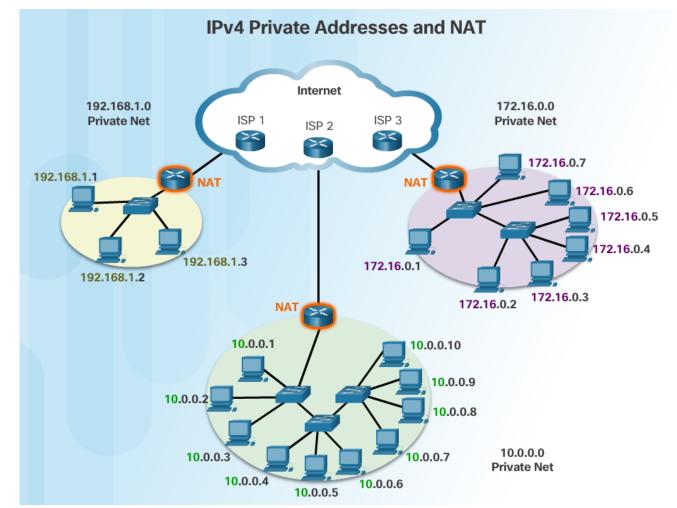


Wireless Router Example

- Port forwarding can be enabled for specific applications
 - Must specify the inside local address that requests should be forwarded to

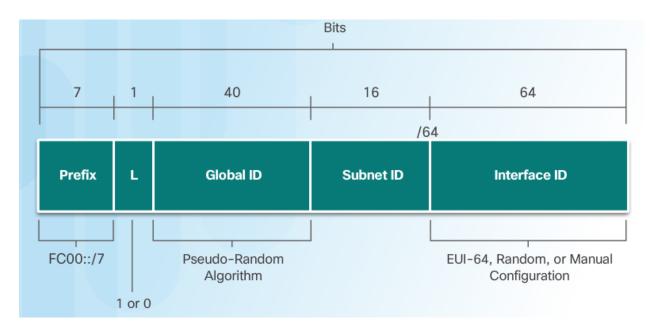
Configuring Port Forwarding with IOS

R2(config)# interface Serial0/1, R2(config-if)# ip nat outside

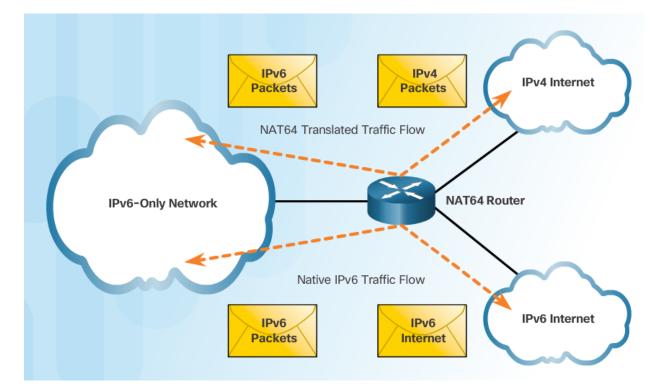

R2# show ip nat translations

Pro Inside global	Inside local	Outside local	Outside global
tcp 209.165.200.225:8080	192.168.10.254:80	209.165.200.254:46088	209.165.200.254:46088
tcp 209.165.200.225:8080	192.168.10.254:80		
R2#			

to more than one port if necessary.


NAT and IPv6

- NAT for IPv6?
- IPv6 was developed with the intention of making NAT for IPv4 unnecessary
- IPv6 does have its own form of NAT
 - IPv6 has its own private address space


NAT and IPv6

- IPv6 unique local addresses (ULAs) are similar to IPv4 private addresses
 - ULAs are to provide IPv6 address space for communications within a local site.
 - First 64 bits of a ULA
 - Prefix of FC00::/7 (FC00 to FDFF)
 - Next bit is a 1 if the prefix is locally assigned
 - Next 40 bits define a global ID
 - Next 16 bits is a subnet ID
 - Last 64 bits of a ULA is the interface ID or host portion of the address
- Allows sites to be combined without address conflicts
- Allows internal connectivity
- Not routable on the Internet

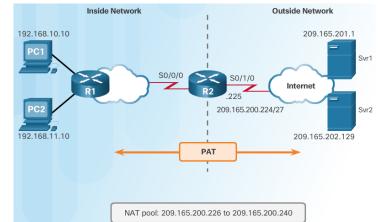
NAT and IPv6

- Provide access between IPv6-only and IPv4-only networks (not translating private address to public addresses as NAT for IPv4 was)
- Techniques available
 - Dual-stack both devices run protocols for both IPv4 and IPv6
 - Tunneling Encapsulate the IPv6 packet inside an IPv4 packet for transmission over an IPv4-only network
 - NAT for IPv6 (translation)
 - Should not be used as a long term strategy
 - The older Network Address Translation-Protocol Translation (NAT-PT)
 - NAT64

Troubleshoot NAT

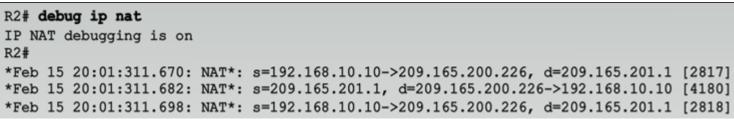
NAT Troubleshooting Commands

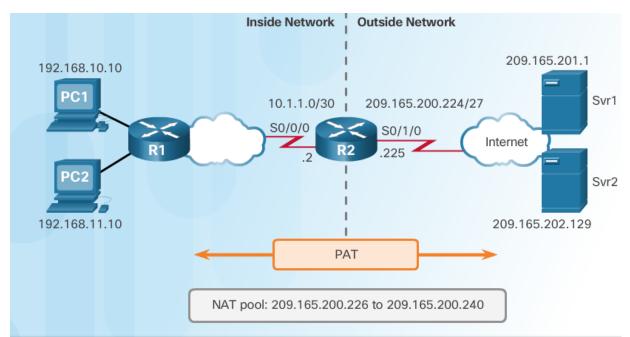
- 1. Determine what NAT is supposed to achieve and compare with configuration. This may reveal a problem with the configuration.
- 2. Verify translations using the show ip nat translations command.
- Use the **clear** and **debug** 3. commands to verify NAT.
- 4. Review what is happening to the packet and verify routing.


R2# clear ip nat statistics R2# clear ip nat translation * R2#

<output omitted>

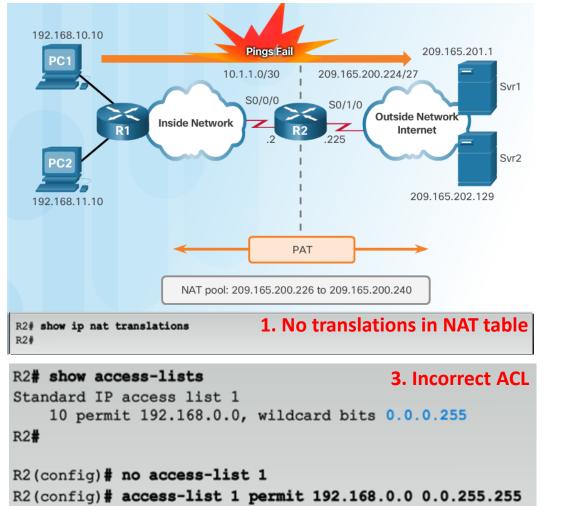
R2# show ip nat statistics Total active translations: 1 (0 static, 1 dynamic; 1 extended) Peak translations: 1, occurred 00:00:09 ago Outside interfaces: Serial0/0/1 Inside interfaces: Serial0/0/0 Hits: 31 Misses: 0 CEF Translated packets: 31, CEF Punted packets: 0 Expired translations: 0 Dynamic mappings: -- Inside Source [Id: 5] access-list 1 pool NAT-POOL2 refcount 1 pool NAT-POOL2: netmask 255.255.255.224 start 209.165.200.226 end 209.165.200.240 type generic, total addresses 15, allocated 1 (6%), misses 0


<output omitted>


R2# show ip nat translations Pro Inside global Inside local Outside local Outside global tcp 209.165.200.226:19005 192.168.10.10:19005 209.165.201.1:23 209.165.201.1:23

NAT Troubleshooting Commands

- Common commands
 - debug ip nat
 - debug ip nat detailed
- Output symbols and values
 - * The translation is occurring in the fast-switched path
 - s= Source IPv4 address
 - a.b.c.d--->w.x.y.z Source a.b.c.d is translated to w.x.y.z.
 - **d=** Destination IPv4 address
 - [xxxx] IPv4 identification number
- Check the ACL to ensure the correct private addresses are designated.



R2# show access-lists Standard IP access list 1 10 permit 192.168.0.0, wildcard bits 0.0.255.255 (29 matches)

Based on Routing and Switching Essentials v6.0 - CCNA R&S

NAT Troubleshooting Commands

R2# show ip nat statistics Total active translations: 0 (0 static, 0 dynamic; 0 extended) Peak translations: 0 Outside interfaces: 2. Outside and inside Seria10/0/0 Inside interfaces: interfaces are reversed Serial0/1/0 Hits: 0 Misses: 0 <output omitted> R2(config) # interface serial 0/0/0 R2(config-if) # no ip nat outside R2(config-if) # ip nat inside R2(config-if) # exit R2(config) # interface serial 0/0/1 R2(config-if) # no ip nat inside R2(config-if) # ip nat outside R2# show ip nat statistics Total active translations: 1 (0 static, 1 dynamic; 1 extended) Peak translations: 1, occurred 00:37:58 ago Outside interfaces: Seria10/0/1 Inside interfaces: Serial0/1/0 Hits: 20 Misses: 0 Translations CEF Translated packets: 20, CEF Punted packets: 0 Expired translations: 1 working! Dynamic mappings: -- Inside Source [Id: 5] access-list 1 pool NAT-POOL2 refcount 1 pool NAT-POOL2: netmask 255.255.255.224 start 209.165.200.226 end 209.165.200.240 type generic, total addresses 15, allocated 1 (6%), misses 0 <output omitted>

R2# show 1p hat translations			
Pro Inside global	Inside local	Outside local	Outside global
icmp 209.165.200.226:38	192.168.10.10:38	209.165.201.1:38	209.165.201.1:38

Based on Routing and Switching Essentials v6.0 - CCNA R&S

Summary

- Explain how NAT provides IPv4 address scalability in a small to medium-sized business network.
- Configure NAT services on the edge router to provide IPv4 address scalability in a small to medium-sized business network.
- Troubleshoot NAT issues in a small to medium-sized business network.