Foundations of Audio Engineering: Audio signal processing - 2

Nimal Skandhakumar

Faculty of Technology University of Sri Jayewardenepura

2020

Partially based on:

- Christopher Ariza. 21M.380 Music and Technology: Recording Techniques and Audio Production. Spring 2012. Massachusetts Institute of Technology: MIT OpenCourseWare, <u>https://ocw.mit.edu</u>. License: <u>Creative Commons BY-NC-SA</u>.
- Digital Audio Production IT3038PA, NITEC Digital Audio & Video Production. 2013. Institute of Technical Education College West.

Frequency-based Signal Processors

Processors that Shape Frequencies

- Shaping timbre is not the same as transforming timbre
- Shaping timbre
 - Filters
 - Aural exciters and enhancers
 - Bass processors
- Changing and adding frequencies
 - Pitch shifters
 - Harmonizers

Equalizers and Filters

- Equalizers (EQ) are filters (a distinction is not useful)
 - selectively boost or attenuate frequency regions
 - cannot add frequencies that are not present in the source
 - mixing out of phase signals can cause filtering

Filter Parameters and Units

- Gain:
 - 0 dB is no change (unity); otherwise, may be positive or negative
- Rolloff:
 - slope, a change in gain over
 frequency measured in dB / octave
- Bands and bandwidth:
 - measured in octaves or Q
- Center and cutoff frequency:
 - Hertz

Filter Types and Parameters

- Low/High Pass, High/Low Cut:
 - cutoff frequency, rolloff
- Low/High shelves:
 - $\circ \quad \text{cutoff frequency, gain, Q} \\$
- Parametric (peak/notch) filters:
 - $\circ \quad \text{center frequency, gain, Q} \\$

https://www.soundonsound.com/techniques /using-your-sequencers-equalisers

Low/High Pass, High/Low Cut

- Cutting narrow ranges at the top or the bottom of the spectrum
- The most simple (and extreme) filter
- Parameters:
 - cutoff frequency, rolloff
- Types:
 - Low pass, high cut filter
 - \circ $\;$ High pass, low cut filter

https://www.youtube.com/watch?v=JndvN1ngSi4

Low/High Pass, High/Low Cut

- Removing high frequency noise or buzz
- Removing low frequency stage noise, machine noise, hum
- Isolating one frequency region (combining both low and high pass) to remove leakage
- Removing super-low frequency signals from digital instruments
- Be careful to avoid removing essential harmonics (low pass)

Low/High Shelves

- All frequencies above or below a certain point are boosted or attenuated by the same amount
- Coarse, broad filters
- Parameters:
 - Cutoff frequency, Gain, Q (sometimes)

Low/High Shelves

- Correcting for a general deficiency in a microphone or recording:
 - \circ too little or too much bass/treble
- Boosting upper harmonics or the air band (high shelf)
- Avoid boost on low-end; be careful about boosting low frequencies you are not hearing (low shelf)

Parametric Equalizers

- Boosts or attenuates a range of frequencies centered around a certain point
- Alternative names:
 - peak / notch filter, peaking filter, bell EQ
- Parameters:
 - center frequency, bandwidth (Q), gain
- Some parametric filters may not allow some or all three parameters to be changed
 - Semi-parametric, Two-parameter, Oneparameter

Parametric Equalizers

- Extremely narrow bandwidth boosts will result in pitched-overtones
- Favor boosting with broad bandwidths to shape regions of harmonics/fundamentals
- Narrow bandwidth cuts can be used to remove noise, feedback, or other undesirable artifacts
- Favor broad-bandwidth parametric for low-frequency boosts over a low-shelf boost

Graphic Equalizers

- Numerous one-parameter parametric filters
- Distributed across the frequency range in equal octave segments
- Common center frequency spacings:
 - \circ 1/3 octave, 1/6 octave
- Used for live sound engineering, tuning rooms, avoiding feedback

Time-based Signal Processors

Time-Based Processors

• Reverbs

• Flangers, chorus, and phasing

• Delays

https://ledgernote.com/columns/mixing-mastering/delay-audio-effect/

Time-Based Processors

- Common Attributes
 - All employ delays
 - All are often processed in parallel (with an auxiliary track or with mix controls)
 - All are often best used in stereo rather than mono
 - All are easily over-used

Acoustic Reverberation

- When we hear sound, we hear a mix of:
 - Direct (dry) sound
 - Individual reflections (early reflections) from nearby hard surfaces.
 - Other reflections so closely spaced and overlapping that our brain can't perceive them as separate.

https://wiki.audacityteam.org/wiki/Principles_of_Reverb

Reverb Processors

- Why use reverb processors?
 - Coherence: reconnecting tracks recorded in isolation or without space
 - Recreating an acoustic space
 - Special effects

- Pre-Delay:
 - time before reverb starts
 - a bit (30 ms) is generally needed to get reverb away from dry signal
- Early reflections
- Diffusion
- Wet / dry mix

Spring Reverb

Plate Reverb

Time Delays

- Records an input signal to an audio storage medium, and then plays it back after a period of time.
- The delayed signal may either be played back multiple times, or played back into the recording again, to create the sound of a repeating, decaying echo.
- The most basic type of effect is simple delay.
 - Delay > 50 ms: audible echoes
 - Delay < 10 ms: coloration, filtering
 - Between, enhancement, increase in volume

Simple Delay

Multitap Delay

Feedback Delay

Other Sound Effects Processors

- Auto Tune
- Pitch Bend
- Phasing & Flanging
- Vibrato
- Chorus

~ 🗖 Aı	udio Effects
> 🖿	Obsolete Audio Effects
6	Adaptive Noise Reduction
8	Analog Delay
6	Automatic Click Remover
8	Balance
6	Bandpass
6	Bass
- 61	Binauralizer - Ambisonics
61	Channel Volume
61	Chorus/Flanger
61	Convolution Reverb
	DeEsser
61	DeHummer
6	Delay
1	Distortion

Further Learning

- What are Audio Effects?
 - <u>https://www.youtube.com/watch?v=NJ2WzLg5rDc</u>
- Reverb and Delay Explained
 - <u>https://www.youtube.com/watch?v=-jPPJEHMepA</u>
- EQ Explained
 - <u>https://www.youtube.com/watch?v=I6ZF_NHvqzU</u>

Practicals