
Client Server Architectures
Platform Technologies

Based on Client/Server Architecture by Alex Berson &
Client/Server Distributed Systems by Dr. Andrew Davison

1

Client/Server Basics

• A first examination of client/server
functionality.

• A brief definition:
• A server is a program (or collection of

cooperating programs) that provides
services and/or manages resources on
the behalf of other programs (its clients).

LAN
or WAN

Server Data

Clients

Network

2

Example: An ATM network

• The clients are the ATM machines
• user interfaces

• some simple application processing

• The server is at the bank
• most application processing

• very large database of customer accounts

3

Architectural Requirements

• Reliable, robust communication between the clients and server

• Client/server cooperation

• Server controls services/data that the client accesses

• Server handles conflicting requests

• Application processing is usually distributed between a client and the
server

4

Client/Server Architectures

1. The 2-tier architecture

2. The 3-tier architecture

3. Locating the business logic

4. Locating the data

5. N-tier architecture

6. Microservices architecture

7. Web-Queue-Worker architecture

8. Big data, Big compute architectures

5

The 2-tier architecture

• The database is on the server
• could some of it be moved to the client?

• Distributed database logic
• most of it is on the client

• The client does the presentation.

• ‘Fat’ versus ‘thin’ clients.

• Much simpler if all the database
servers are the same (homogenous).

6

Presentation Logic

Business Logic

Database Logic

DBMS
Data
base

Database Logic

Client

Server

The 2-tier architecture: Drawbacks

• It is difficult to build heterogeneous database environments.

• Transaction processing is limited by the DBMS.

• Asynchronous processing is difficult
• i.e. the client doesn’t wait for the server’s answer

• Scalability?

7

The 3-tier architecture

• The back-end server is usually a very large database (or databases)

• The middle-tier server usually holds shared applications
(application/business logic)

8

Server
Data

Application Servers Data Servers

Server
Data

UNIX

Win/NT

Clients

The 3-tier architecture: Benefits over 2-tier

• The application logic in the middle-tier is more independent of the
client and the back-end server
• it should be more robust

• The application logic in the middle-tier can work more easily with
data from multiple sources.

• Encourages multiple back-end servers
• encourages data distribution

9

The 3-tier architecture: Drawbacks

• Much more complex:
• network management, data integrity, maintenance, development

• Still (partially) dependent on platforms
• e.g. the client may still be restricted to a certain application server, but not

(maybe) to any data server

10

The 3-tier architecture: Examples

• A ‘real’ ATM network
• the ATM machines are the clients

(as before)

• the middle-tier servers provide
certain processing
• checking balances, money transfer

requests

• directing queries to the relevant
back-end server

• back-end server(s)
• specialized by account type

• very robust concurrency control,
transaction processing

• Many Web applications are 3-tier:
• the Web browser is the client

software

• the embedded components in Web
pages come from the middle-tier

• the back-end server contains the
database/groupware

11

Locating the Business Logic

• Three ways of distributing the
‘business logic’ (i.e. program code):
• locate it entirely on the client

- fat client

• locate it entirely on the server
- fat server

• split it between the client and server

12

Presentation Logic

Business Logic

DBMS

Database Logic

Business Logic

Data
base

Client

Server

Fat Server Advantages

• Easier to update the application logic since clients not involved.

• Data is better hidden from clients.

• Easier to manage and debug since data and code is centrally located.

• Reduces bandwidth problems since data processing stays on the server.

• Better for mission-critical applications when fault-tolerance and
stability are important.

• Encourages client simplicity and compatibility since the server must be
able to work with many types of client.
• e.g. support standard APIs

13

Fat Client Advantages

• The server is unaffected when updates are done to the client’s
application logic
• the server will be more stable

• Easier to program
• less networking

• more direct access to client platform features, such as GUI

14

DBMS

Database Logic
Data
base

Locating the Data

• Issues:
• Dividing up the data

• Transparency of the distribution

• Data integrity / synchronisation /
consistency

• Data administration /
management

15

Presentation Logic

Business Logic

DBMS

Database Logic

Data
base

Client

Multiple Servers

Data
base

Transaction Processing

• A transaction is a sequence of actions which takes a system (usually a
database) from one consistent state to another.
• e.g. change a customer’s record

• A transaction should possess the “ACID” properties:
• Atomicity, Consistency, Isolation, Durability

• Recovery and concurrency mechanisms are necessary, typically
implemented in a Transaction Processing Management (TPM) system.

• TPMs become very complex when data is distributed.
• ACID must be distributed as well

16

N-tier architecture

• An N-tier architecture divides an application into logical layers and
physical tiers.

17

Common Features

• Asynchronous connectivity

• Data distribution using replication

• Name/directory services for resource location independence

• More complex data types

• More complex analysis

• Authentication services

• Distributed file system(s)

• Time services

18

N-tier architecture on virtual machines

• Each tier consists of two or more VMs, placed in an availability set or
virtual machine scale set. Multiple VMs can provide resiliency in case
one VM fails.

19

Microservices architecture

• A microservices architecture consists of a collection of small,
autonomous services.

• Each service is self-contained and should implement a single business
capability.

20

Microservices architecture

Benefits

• Agility

• Small, focused teams

• Mix of technologies

• Fault isolation

• Scalability

• Data isolation

Challenges

• Complexity

• Development and testing

• Lack of governance

• Network congestion and latency

• Data integrity

• Management

21

Web-Queue-Worker architecture

• A web front end that serves client requests

• A worker that performs resource-intensive tasks, long-running
workflows, or batch jobs.

• The web front end communicates with the worker through a message
queue.

22

Web-Queue-Worker architecture

Benefits

• Relatively simple architecture
that is easy to understand.

• Easy to deploy and manage.

• Clear separation of concerns.

• The front end is decoupled from
the worker using asynchronous
messaging.

• The front end and the worker
can be scaled independently.

Challenges

• Without careful design, the front
end and the worker can become
large, monolithic components
that are difficult to maintain and
update.

• There may be hidden
dependencies, if the front end
and worker share data schemas
or code modules.

23

Big data architecture

• For handling the ingestion, processing, and analysis of data that is too
large or complex for traditional database systems.

24

Big compute architecture

• For large-scale workloads that require a large number of cores,
such as image rendering, fluid dynamics, financial risk modelling,
oil exploration, drug design, and engineering stress analysis

25

Middleware

• A set of tools that provide a
uniform means and style of
access to system resources
across all platforms

• Enable programmers to use the
same method to access data
regardless of the location of
that data

26

Recurring Issues with Client/Server

• LAN, WAN, Internet scaling

• Data distribution/replication

• Distributed processing

• System management/maintenance

• Choice of middleware

• Standards / open systems

27

Advantages of Client/Server

• Mainframe functionality can be made widely available
• cost benefits

• Processing and data are localised on the server
• reduces network traffic, response time,

bandwidth requirements

• Business logic can be distributed (in 3-tier model)
• reuse, portability

• Present-day systems are too large and involve too many users to be
located on one machine.

28

Disadvantages of Client/Server

• The server becomes a bottleneck

• Distributed applications are much more complex than non-distributed
ones
• i.e. in development, run time, maintenance, upgrades

• Requires a shift in business practises
• local, simple data --> distributed, open, complex data

29

Client/Server Terminology

• Client
• A networked information requester, usually a PC or workstation, that can query

database and/or other information from a server

• Server
• A computer, usually a high-powered workstation, a minicomputer, or a mainframe, that

houses information for manipulation by networked clients

• Applications Programming Interface (API)
• A set of function and call programs that allow clients and servers to intercommunicate

• Middleware
• A set of drivers, APIs, or other software that improves connectivity between a client

application and a server

30

