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Client/Server Basics

• A first examination of client/server 
functionality.

• A brief definition:
• A server is a program (or collection of 

cooperating programs) that provides 
services and/or manages resources on 
the behalf of other programs (its clients).
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Example: An ATM network

• The clients are the ATM machines 
• user interfaces

• some simple application processing

• The server is at the bank 
• most application processing

• very large database of customer accounts
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Architectural Requirements

• Reliable, robust communication between the clients and server

• Client/server cooperation

• Server controls services/data that the client accesses

• Server handles conflicting requests

• Application processing is usually distributed between a client and the 
server
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Client/Server Architectures

1. The 2-tier architecture

2. The 3-tier architecture

3. Locating the business logic

4. Locating the data

5. N-tier architecture

6. Microservices architecture

7. Web-Queue-Worker architecture

8. Big data, Big compute architectures
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The 2-tier architecture

• The database is on the server
• could some of it be moved to the client?

• Distributed database logic
• most of it is on the client

• The client does the presentation.

• ‘Fat’ versus ‘thin’ clients.

• Much simpler if all the database 
servers are the same (homogenous).
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The 2-tier architecture: Drawbacks

• It is difficult to build heterogeneous database environments.

• Transaction processing is limited by the DBMS.

• Asynchronous processing is difficult
• i.e. the client doesn’t wait for the server’s answer

• Scalability?
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The 3-tier architecture

• The back-end server is usually a very large database (or databases)

• The middle-tier server usually holds shared applications 
(application/business logic)
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The 3-tier architecture: Benefits over 2-tier

• The application logic in the middle-tier is more independent of the 
client and the back-end server
• it should be more robust

• The application logic in the middle-tier can work more easily with 
data from multiple sources.

• Encourages multiple back-end servers
• encourages data distribution
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The 3-tier architecture: Drawbacks

• Much more complex:
• network management, data integrity, maintenance, development

• Still (partially) dependent on platforms
• e.g. the client may still be restricted to a certain application server, but not 

(maybe) to any data server
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The 3-tier architecture: Examples

• A ‘real’ ATM network
• the ATM machines are the clients 

(as before)

• the middle-tier servers provide 
certain processing
• checking balances, money transfer 

requests

• directing queries to the relevant 
back-end server

• back-end server(s)
• specialized by account type

• very robust concurrency control, 
transaction processing

• Many Web applications are 3-tier:
• the Web browser is the client 

software

• the embedded components in Web 
pages come from the middle-tier

• the back-end server contains the 
database/groupware
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Locating the Business Logic

• Three ways of distributing the 
‘business logic’ (i.e. program code):
• locate it entirely on the client 

- fat client

• locate it entirely on the server 
- fat server

• split it between the client and server
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Fat Server Advantages

• Easier to update the application logic since clients not involved.

• Data is better hidden from clients.

• Easier to manage and debug since data and code is centrally located.

• Reduces bandwidth problems since data processing stays on the server.

• Better for mission-critical applications when fault-tolerance and 
stability are important.

• Encourages client simplicity and compatibility since the server must be 
able to work with many types of client.
• e.g. support standard APIs
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Fat Client Advantages

• The server is unaffected when updates are done to the client’s 
application logic
• the server will be more stable

• Easier to program
• less networking

• more direct access to client platform features, such as GUI
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DBMS

Database Logic
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Locating the Data

• Issues:
• Dividing up the data

• Transparency of the distribution

• Data integrity / synchronisation / 
consistency

• Data administration / 
management
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Transaction Processing

• A transaction is a sequence of actions which takes a system (usually a 
database) from one consistent state to another.
• e.g. change a customer’s record

• A transaction should possess the “ACID” properties:
• Atomicity, Consistency, Isolation, Durability

• Recovery and concurrency mechanisms are necessary, typically 
implemented in a Transaction Processing Management (TPM) system.

• TPMs become very complex when data is distributed.
• ACID must be distributed as well
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N-tier architecture

• An N-tier architecture divides an application into logical layers and 
physical tiers.
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Common Features

• Asynchronous connectivity

• Data distribution using replication

• Name/directory services for resource location independence

• More complex data types

• More complex analysis

• Authentication services

• Distributed file system(s)

• Time services

18



N-tier architecture on virtual machines

• Each tier consists of two or more VMs, placed in an availability set or 
virtual machine scale set. Multiple VMs can provide resiliency in case 
one VM fails. 
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Microservices architecture

• A microservices architecture consists of a collection of small, 
autonomous services. 

• Each service is self-contained and should implement a single business 
capability.
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Microservices architecture

Benefits

• Agility

• Small, focused teams

• Mix of technologies

• Fault isolation

• Scalability

• Data isolation

Challenges

• Complexity

• Development and testing

• Lack of governance

• Network congestion and latency

• Data integrity

• Management
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Web-Queue-Worker architecture

• A web front end that serves client requests

• A worker that performs resource-intensive tasks, long-running 
workflows, or batch jobs. 

• The web front end communicates with the worker through a message 
queue.
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Web-Queue-Worker architecture

Benefits

• Relatively simple architecture 
that is easy to understand.

• Easy to deploy and manage.

• Clear separation of concerns.

• The front end is decoupled from 
the worker using asynchronous 
messaging.

• The front end and the worker 
can be scaled independently.

Challenges

• Without careful design, the front 
end and the worker can become 
large, monolithic components 
that are difficult to maintain and 
update.

• There may be hidden 
dependencies, if the front end 
and worker share data schemas 
or code modules.
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Big data architecture

• For handling the ingestion, processing, and analysis of data that is too 
large or complex for traditional database systems.
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Big compute architecture

• For large-scale workloads that require a large number of cores, 
such as image rendering, fluid dynamics, financial risk modelling, 
oil exploration, drug design, and engineering stress analysis
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Middleware

• A set of  tools that provide a 
uniform means and style of  
access to system resources 
across all platforms

• Enable programmers to use the 
same method to access data 
regardless of  the location of  
that data
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Recurring Issues with Client/Server

• LAN, WAN, Internet scaling

• Data distribution/replication

• Distributed processing

• System management/maintenance

• Choice of middleware

• Standards / open systems
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Advantages of Client/Server

• Mainframe functionality can be made widely available
• cost benefits

• Processing and data are localised on the server
• reduces network traffic, response time,

bandwidth requirements

• Business logic can be distributed (in 3-tier model)
• reuse, portability

• Present-day systems are too large and involve too many users to be 
located on one machine.
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Disadvantages of Client/Server

• The server becomes a bottleneck

• Distributed applications are much more complex than non-distributed 
ones
• i.e. in development, run time, maintenance, upgrades

• Requires a shift in business practises
• local, simple data --> distributed, open, complex data
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Client/Server Terminology

• Client
• A networked information requester, usually a PC or workstation, that can query 

database and/or other information from a server

• Server
• A computer, usually a high-powered workstation, a minicomputer, or a mainframe, that 

houses information for manipulation by networked clients

• Applications Programming Interface (API)
• A set of function and call programs that allow clients and servers to intercommunicate

• Middleware
• A set of drivers, APIs, or other software that improves connectivity between a client 

application and a server
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