File Systems

Platform Technologies

Based on Tanenbaum, Modern Operating Systems

Need for long-term storage

 Computer applications need to store and retrieve information

* There is need for long-term storage, because
* Limited amount of space in main memory or virtual memory
* Information must be retained beyond the life of a process
* Multiple processes may need to access (parts of) same information

Requirements for long-term storage

* Essential requirements for long-term information storage:
1. It must be possible to store a very large amount of information.
2. The information must survive the termination of the process using it.
3. Multiple processes must be able to access the information at once.

History of long-term storage

The Magnetic Drum

Magnetic Tape USB Drive
Hard Disk Drive
Punch Card Punched Tape .

XYY Jol]
eeosc0ee
[IIXTXXY)
o000 O®
[X LY Jel]}
o000 0OS
[Jel XXX X}
AT YY)
o00000O
L XL Jel X 1)
AT YY)
o000 0®
L X Jel X 1 Te]
o000 O®

o000 0O®
AL LT YY)

1946 1963 1969 1979 1995 2000 2000s
172§ 1846 1950s 1960s 1960s 2000
Cassette The Floppy Disk

Compact Disk DVD Blue-Ray Cloud

Selectron Tubes

Based on Tanenbaum, Modern Operating Systems 3 e 4

Why File Systems?

* Think of a disk as a linear sequence of fixed-size blocks and
supporting two operations:
* Read block k
* Write block k

* For large systems, few of the questions that quickly arise:
1. How do you find information?
2. How do you keep one user from reading another user’s data”?
3. How do you know which blocks are free?

File Systems

* Files are logical units of information created by processes.

* Processes can read existing files and create new ones if need be.

* Files are managed by the operating system.

* The operating system dealing with files is known as the file system.

File Systems

* Implement an abstraction for secondary storage (files)

* Organize files logically (directories)

* Protect data from unwanted access (security)

* Permit access of data between processes, people, and machines (sharing)

Files

 Afile is data with some properties
* Contents, size, owner, last read/write time, protection, etc.

* A file can also have a type

* Understood by other parts of the OS or runtime libraries
* Executable, dll, souce, object, text, etc.

* Understood by the file system
* Block/character device, directory, link, etc.

* A file’s type can be encoded in its name or contents

* Windows encodes type in name - .com, .exe, .bat, .dll, .jpg, etc.

* Unix encodes type in contents - Magic numbers, initial characters
* e.g., #! for shell scripts

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.qgif Compuserve Graphical Interchange Format image
file.hlp Help file

file.ntml World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Obiject file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Based on Tanenbaum, Modern Operating Systems 3 e

File Attributes

Attribute

Meaning

Protection

Who can access the file and in what way

Password

Password needed to access the file

Creator

ID of the person who created the file

Owner

Current owner

Read-only flag

0 for read/write; 1 for read only

Hidden flag

0 for normal; 1 for do not display in listings

System flag

0 for normal files; 1 for system file

Archive flag

0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags

0 for unlocked; nonzero for locked

Record length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Based on Tanenbaum, Modern Operating Systems 3 e

10

File Structure

1 Byte 1 Record
L~ Ve

Ant Fox || Pig

N\

Cat || Cow || Dog Goat || Lion || Owl Pony || Rat [|Worm

Hen Ibis || Lamb

(@) (b) (c)
a) Afileis an unstructured sequence of bytes. The operating system does not know or care what is in
the file. Used in Unix and Windows.

b) Afileis a sequence of fixed-length records, generally matching the 80-column punched cards and
132-character line printer. This was a common model on mainframe computers.

c) Afile consists of a tree of records, each containing a key field in a fixed position in the record. This is
used on some large mainframe computers for commercial data processing.

File Types

* Regular files are the ones that contain user information

* Directories are system files for maintaining the file system structure
* Character special files are related to input/output

* Block special files are used to model disks

* Regular files are generally either ASCII files or binary files.

* ASCII files can be displayed and printed as is, and they can be edited with any
text editor.

* Binary files have some internal structure known to programs that use them.

File Types

a) An executable file
b) An archive

'« Header —

Magic number

Text size

Data size

BSS size

Symbol table size

Entry point

Flags

Text

D)
T ¢

D)

Data

>)

{C

))

Relocation
bits

))
T (

Symbol
table

b
¢

(a)

Header

Object
module

Header

Object
module

Header

Object
module

Module
name

Date

Owner

Protection

Size

File Access

* Sequential access

» a process could read all the bytes or records in a file in order, starting at the
beginning, but could not skip around and read them out of order

* Used with magnetic tapes

e Random-access

* Files whose bytes or records can be read in any order
* Used with discs
* Essential for many applications, such as database systems

File Operations

* The most common system calls relating to files:
* Create
* Delete
* Open
* Close
* Read
* Write
* Append
* Seek
e Get Attributes
e Set Attributes
* Rename

Directories

* Directories serve two purposes
* For users, they provide a structured way to organize files
* For the file system, they provide a convenient naming interface that allows
the implementation to separate logical file organization from physical file
placement on the disk
* Most file systems support multi-level directories

* Naming hierarchies (/, /usr, /usr/local/, ...)

* Most file systems support the notion of a current directory
* Relative names specified with respect to current directory
* Absolute names start from the root of directory tree

Directory Internals

e A directory is a list of entries
* <name, location>

 Name is just the name of the file or
directory

* Location depends upon how file is
represented on disk

e List is usually unordered (effectively
random)

* Entries usually sorted by program that
reads directory

* Directories typically stored in files

bin

etc

bin

~— Root directory

etc

lib

usr

tmp

lib

T

usr tmp

ast

jim

ast

;

lib jim

- ~— /usr/jim
dict.

Directory Operations

 System calls for managing directories:

* Create

* Delete

* Opendir

* Closedir

* Readdir

* Rename

* Link

* Uplink

File System Layout

* File systems define a block size (e.g., 4KB)
» Disk space is allocated in granularity of blocks

* A “Master Block” determines location of root directory
* Always at a well-known disk location
» Often replicated across disk for reliability

* A free map determines which blocks are free, allocated
e Usually a bitmap, one bit per block on the disk
* Also stored on disk, cached in memory for performance

* Remaining disk blocks used to store files (and dirs)
* There are many ways to do this

File System Layout

- Entire disk >
Partition table Disk partition \
MBR

Boot block | Superblock | Free space mgmt I-nodes Root dir Files and directories

Based on Tanenbaum, Modern Operating Systems 3 e

20

Disk Layout Strategies

* Files can span multiple disk blocks

* How do you find all of the blocks for a file?

1. Contiguous allocation
* Fast, simplifies directory access
* Inflexible, causes fragmentation, needs compaction
2. Linked structure
* Each block points to the next, directory points to the first
* Good for sequential access, bad for all others
3. Indexed structure (indirection, hierarchy)
* An “index block” contains pointers to many other blocks
* Handles random better, still good for sequential
* May need multiple index blocks (linked together)

Contiguous Allocation

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
— " — r -) s - ~ —

;V._J L ~ J L —~ J
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)

(File A) (File C) (File E) (File G)

s r S 1 r A] =
- L i J i i J

File B 5 Free blocks
(b)

6 Free blocks

Linked List Allocation

File A
- —— —+— —+—| O
File File File File File
block block block block block
0 1 2 3 4
Physical 4 £ 2 10 12
block
File B
- - | 0
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14

block

Unix i-nodes

* Unix i-nodes implement an
indexed structure for files

e Each i-node contains number of
file block pointers

e Last block points to a block
containing more disk-block
addresses

File Attributes

Address of disk block 0

Address of disk block 1

Y

Address of disk block 2

Y

Address of disk block 3

Y

Address of disk block 4

Y

Address of disk block 5

Y

Address of disk block 6

Y

Address of disk block 7

Y

Address of block of pointers

Y

Y

Disk block

containing

additional
disk addresses

Root directory

Sharing Files Between Directori

* Links (or hard links) in source_file

target_dir
* Simply create another link from target_dir to
the inode of source_file (the inode is not (8) 5
duplicated)
* Now two directories have links to source_file (?) (¢) (¢) (¢
* What if we remove one? Sharediie
° NOW you understand Why the System Ca” to C's directory B's directory C's directory B's directory
remove a file is named “unlink”? : :
/ \ / \
/ \ / \
Owner = C Owner =C Owner =C
Count =1 Count=2 Count =1
| / {

O O O

(@) (b) ()

File Buffer Cache

* Applications exhibit significant locality for reading and writing files

* |dea: Cache file blocks in memory to capture locality
* This is called the file buffer cache
* Cache is system wide, used and shared by all processes
* Reading from the cache makes a disk perform like memory
* Even a 4 MB cache can be very effective

e [ssues

* The file buffer cache competes with VM (tradeoff here)
e Like VM, it has limited size
* Need replacement algorithms again (LRU usually used)

Keeping Track of Free Blocks

a) Storing the free list on a linked list

Free disk blocks: 16, 17, 18

42 /->— 230 (>- 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110 b) A bltmap
97 342 422 0110110110111011
41 214 140 1110110111011 * A disk with n blocks requires a bitmap
63 160 223 1101101010001111 . .
with n bits.
21 664 223 0000111011010111
48 216 160 1011101101101111 * Free blocks are represented by 1sin
262 320 126 1100100011101111
” 1]t ., { ' 1 the map, allocated blocks by Os (or
310 180 142 0111011101110111 Vlce Versa)'
516 —/ 482 —/ 141 1101111101110111
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers
(a) (b)

The MS-DOS File System

FAT1216 Bytes
Root
Researved FAT Directory Data
Area Area I Area
v
-+ -
e ; " — :
Re - od : N - f Root Num of
S8y um o H
Mum of FATS * . , Sectors in
Sectors Size of each FAT Direclory Entries File System
FAT32
=]
Reserved FAT Dira?:?;ry Data
Area Area i Area
* L]
L -
> T & - |
- ' Num of
Reserved : = Sectors in
Sectors Num of FATS * Root Directary File System

Size of each FAT Starting Location

8

3

1

10

2

2 2 4

File name

Size

/,

Extension Attributes

Reserved Time Date First

T

VN

block
number
Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1TB
8 KB 512 MB 27TB
16 KB 1024 MB 2TB
32 KB 2048 MB 2TB
28

Based on Tanenbaum, Modern Operating Systems 3 e

New Technology File System (NTFS

Extent
File System Diata .
¥ Mazter File Takle Extent
| | |
Master Boot PER1 I'-.-1IJ_::r-.-1astc—r File Table) PER2Z MET
Record {Partition Boot Record) Unused Space Log file record
Extent
Feature FAT FAT32 exFAT NTFS
Maximum volume 4 GE 32 GB 128 PB 256 TB
Slze Extent 1
Small file recoxd |
Maximum file size 4 GB 4GB 16 EB 18 EB
(exabytes) | (exabytes) Exbent =
‘ : o . . . Larges file record
Maximum filename 8.3 255 255 255
ength characters | characters | characters | characters cmall directory record Evbent 3
Maximum cluster size | 64 KB 32 KB 32 ME 2048 KB Il
File compression No No No Yes
File encryption No No No Yes

Permissions MNo No Mo Yes

The ext4d Journaling File System

Bytes 2 14

File name

T

Direct I-node
Data Blocks number
e mEmmssmsmssma==a=a Batbibianm |emiure e e w e e . direct
. ndirec
: B L U d : Inode Data Blocks
' oo nuse i
Black Group Q Black Group N z Information .
1 | Sector P P M lsectors : - Double Indirect
.) Blocks of Data Blocks
e 2 Pointers
3
1
2 / Blocks of

%

‘N
1 0 Pointers
I/ — | 1
13
\
~
~
~

Super Group Block Inode Incde Data - 2
Block | Descriptors |Bitmap| Bitmap Table Blocks - 1 — |
L 2 128
~ |
A 128 1
\\ \\ >

128

,
’
’
,
’
K
’
rd
’
’,
’
¢
.

’

