
File Systems
Platform Technologies

Based on Tanenbaum, Modern Operating Systems

1



Need for long-term storage

• Computer applications need to store and retrieve information

• There is need for long-term storage, because
• Limited amount of space in main memory or virtual memory

• Information must be retained beyond the life of a process

• Multiple processes may need to access (parts of) same information

Based on Tanenbaum, Modern Operating Systems 3 e 2



Requirements for long-term storage

• Essential requirements for long-term information storage:
1. It must be possible to store a very large amount of information.

2. The information must survive the termination of the process using it.

3. Multiple processes must be able to access the information at once.

Based on Tanenbaum, Modern Operating Systems 3 e 3



History of long-term storage

Based on Tanenbaum, Modern Operating Systems 3 e 4



Why File Systems?

• Think of a disk as a linear sequence of fixed-size blocks and 
supporting two operations:
• Read block k

• Write block k

• For large systems, few of the questions that quickly arise:
1. How do you find information?

2. How do you keep one user from reading another user’s data?

3. How do you know which blocks are free?

Based on Tanenbaum, Modern Operating Systems 3 e 5



File Systems

• Files are logical units of information created by processes.

• Processes can read existing files and create new ones if need be.

• Files are managed by the operating system.

• The operating system dealing with files is known as the file system.

Based on Tanenbaum, Modern Operating Systems 3 e 6



File Systems

• Implement an abstraction for secondary storage (files) 

• Organize files logically (directories)

• Protect data from unwanted access (security)

• Permit access of data between processes, people, and machines (sharing)

Based on Tanenbaum, Modern Operating Systems 3 e 7



Files

• A file is data with some properties
• Contents, size, owner, last read/write time, protection, etc.

• A file can also have a type
• Understood by other parts of the OS or runtime libraries

• Executable, dll, souce, object, text, etc.

• Understood by the file system
• Block/character device, directory, link, etc.

• A file’s type can be encoded in its name or contents
• Windows encodes type in name - .com, .exe, .bat, .dll, .jpg, etc.
• Unix encodes type in contents - Magic numbers, initial characters

• e.g., #! for shell scripts

Based on Tanenbaum, Modern Operating Systems 3 e 8



File Naming

Based on Tanenbaum, Modern Operating Systems 3 e 9



File Attributes

Based on Tanenbaum, Modern Operating Systems 3 e 10



File Structure

a) A file is an unstructured sequence of bytes. The operating system does not know or care what is in 
the file. Used in Unix and Windows. 

b) A file is a sequence of fixed-length records, generally matching the 80-column punched cards and 
132-character line printer. This was a common model on mainframe computers.

c) A file consists of a tree of records, each containing a key field in a fixed position in the record. This is 
used on some large mainframe computers for commercial data processing.

Based on Tanenbaum, Modern Operating Systems 3 e 11



File Types

• Regular files are the ones that contain user information

• Directories are system files for maintaining the file system structure

• Character special files are related to input/output

• Block special files are used to model disks

• Regular files are generally either ASCII files or binary files.
• ASCII files can be displayed and printed as is, and they can be edited with any 

text editor.

• Binary files have some internal structure known to programs that use them.

Based on Tanenbaum, Modern Operating Systems 3 e 12



File Types

a) An executable file

b) An archive

Based on Tanenbaum, Modern Operating Systems 3 e 13



File Access

• Sequential access 
• a process could read all the bytes or records in a file in order, starting at the 

beginning, but could not skip around and read them out of order

• Used with magnetic tapes

• Random-access
• Files whose bytes or records can be read in any order

• Used with discs

• Essential for many applications, such as database systems

Based on Tanenbaum, Modern Operating Systems 3 e 14



File Operations

• The most common system calls relating to files:
• Create
• Delete
• Open
• Close
• Read
• Write
• Append
• Seek
• Get Attributes
• Set Attributes
• Rename

Based on Tanenbaum, Modern Operating Systems 3 e 15



Directories

• Directories serve two purposes
• For users, they provide a structured way to organize files

• For the file system, they provide a convenient naming interface that allows 
the implementation to separate logical file organization from physical file 
placement on the disk

• Most file systems support multi-level directories
• Naming hierarchies (/, /usr, /usr/local/, …)

• Most file systems support the notion of a current directory
• Relative names specified with respect to current directory

• Absolute names start from the root of directory tree

Based on Tanenbaum, Modern Operating Systems 3 e 16



Directory Internals

• A directory is a list of entries 
• <name, location>
• Name is just the name of the file or 

directory
• Location depends upon how file is 

represented on disk

• List is usually unordered (effectively 
random)
• Entries usually sorted by program that 

reads directory

• Directories typically stored in files

Based on Tanenbaum, Modern Operating Systems 3 e 17



Directory Operations

• System calls for managing directories:
• Create

• Delete

• Opendir

• Closedir

• Readdir

• Rename

• Link

• Uplink

Based on Tanenbaum, Modern Operating Systems 3 e 18



File System Layout

• File systems define a block size (e.g., 4KB)
• Disk space is allocated in granularity of blocks

• A “Master Block” determines location of root directory
• Always at a well-known disk location

• Often replicated across disk for reliability

• A free map determines which blocks are free, allocated
• Usually a bitmap, one bit per block on the disk

• Also stored on disk, cached in memory for performance

• Remaining disk blocks used to store files (and dirs)
• There are many ways to do this

Based on Tanenbaum, Modern Operating Systems 3 e 19



File System Layout

Based on Tanenbaum, Modern Operating Systems 3 e 20



Disk Layout Strategies

• Files can span multiple disk blocks

• How do you find all of the blocks for a file?
1. Contiguous allocation

• Fast, simplifies directory access
• Inflexible, causes fragmentation, needs compaction

2. Linked structure
• Each block points to the next, directory points to the first
• Good for sequential access, bad for all others

3. Indexed structure (indirection, hierarchy)
• An “index block” contains pointers to many other blocks
• Handles random better, still good for sequential
• May need multiple index blocks (linked together)

Based on Tanenbaum, Modern Operating Systems 3 e 21



Contiguous Allocation

Based on Tanenbaum, Modern Operating Systems 3 e 22



Linked List Allocation

Based on Tanenbaum, Modern Operating Systems 3 e 23



Unix i-nodes

• Unix i-nodes implement an 
indexed structure for files

• Each i-node contains number of 
file block pointers

• Last block points to a block 
containing more disk-block 
addresses

Based on Tanenbaum, Modern Operating Systems 3 e 24



Sharing Files Between Directories

• Links (or hard links) in source_file
target_dir
• Simply create another link from target_dir to 

the inode of source_file (the inode is not 
duplicated)

• Now two directories have links to source_file

• What if we remove one?

• Now you understand why the system call to 
remove a file is named “unlink”?

Based on Tanenbaum, Modern Operating Systems 3 e 25



File Buffer Cache

• Applications exhibit significant locality for reading and writing files

• Idea: Cache file blocks in memory to capture locality
• This is called the file buffer cache

• Cache is system wide, used and shared by all processes

• Reading from the cache makes a disk perform like memory

• Even a 4 MB cache can be very effective

• Issues
• The file buffer cache competes with VM (tradeoff here)

• Like VM, it has limited size

• Need replacement algorithms again (LRU usually used)

Based on Tanenbaum, Modern Operating Systems 3 e 26



Keeping Track of Free Blocks

a) Storing the free list on a linked list

b) A bitmap
• A disk with n blocks requires a bitmap 

with n bits.

• Free blocks are represented by 1s in 
the map, allocated blocks by 0s (or 
vice versa).

Based on Tanenbaum, Modern Operating Systems 3 e 27



The MS-DOS File System

Based on Tanenbaum, Modern Operating Systems 3 e 28



New Technology File System (NTFS)

Based on Tanenbaum, Modern Operating Systems 3 e 29



The ext4 Journaling File System

Based on Tanenbaum, Modern Operating Systems 3 e 30


