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Need for long-term storage

• Computer applications need to store and retrieve information

• There is need for long-term storage, because
• Limited amount of space in main memory or virtual memory

• Information must be retained beyond the life of a process

• Multiple processes may need to access (parts of) same information
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Requirements for long-term storage

• Essential requirements for long-term information storage:
1. It must be possible to store a very large amount of information.

2. The information must survive the termination of the process using it.

3. Multiple processes must be able to access the information at once.
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History of long-term storage
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Why File Systems?

• Think of a disk as a linear sequence of fixed-size blocks and 
supporting two operations:
• Read block k

• Write block k

• For large systems, few of the questions that quickly arise:
1. How do you find information?

2. How do you keep one user from reading another user’s data?

3. How do you know which blocks are free?
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File Systems

• Files are logical units of information created by processes.

• Processes can read existing files and create new ones if need be.

• Files are managed by the operating system.

• The operating system dealing with files is known as the file system.
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File Systems

• Implement an abstraction for secondary storage (files) 

• Organize files logically (directories)

• Protect data from unwanted access (security)

• Permit access of data between processes, people, and machines (sharing)
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Files

• A file is data with some properties
• Contents, size, owner, last read/write time, protection, etc.

• A file can also have a type
• Understood by other parts of the OS or runtime libraries

• Executable, dll, souce, object, text, etc.

• Understood by the file system
• Block/character device, directory, link, etc.

• A file’s type can be encoded in its name or contents
• Windows encodes type in name - .com, .exe, .bat, .dll, .jpg, etc.
• Unix encodes type in contents - Magic numbers, initial characters

• e.g., #! for shell scripts
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File Naming
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File Attributes
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File Structure

a) A file is an unstructured sequence of bytes. The operating system does not know or care what is in 
the file. Used in Unix and Windows. 

b) A file is a sequence of fixed-length records, generally matching the 80-column punched cards and 
132-character line printer. This was a common model on mainframe computers.

c) A file consists of a tree of records, each containing a key field in a fixed position in the record. This is 
used on some large mainframe computers for commercial data processing.
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File Types

• Regular files are the ones that contain user information

• Directories are system files for maintaining the file system structure

• Character special files are related to input/output

• Block special files are used to model disks

• Regular files are generally either ASCII files or binary files.
• ASCII files can be displayed and printed as is, and they can be edited with any 

text editor.

• Binary files have some internal structure known to programs that use them.
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File Types

a) An executable file

b) An archive
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File Access

• Sequential access 
• a process could read all the bytes or records in a file in order, starting at the 

beginning, but could not skip around and read them out of order

• Used with magnetic tapes

• Random-access
• Files whose bytes or records can be read in any order

• Used with discs

• Essential for many applications, such as database systems
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File Operations

• The most common system calls relating to files:
• Create
• Delete
• Open
• Close
• Read
• Write
• Append
• Seek
• Get Attributes
• Set Attributes
• Rename
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Directories

• Directories serve two purposes
• For users, they provide a structured way to organize files

• For the file system, they provide a convenient naming interface that allows 
the implementation to separate logical file organization from physical file 
placement on the disk

• Most file systems support multi-level directories
• Naming hierarchies (/, /usr, /usr/local/, …)

• Most file systems support the notion of a current directory
• Relative names specified with respect to current directory

• Absolute names start from the root of directory tree
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Directory Internals

• A directory is a list of entries 
• <name, location>
• Name is just the name of the file or 

directory
• Location depends upon how file is 

represented on disk

• List is usually unordered (effectively 
random)
• Entries usually sorted by program that 

reads directory

• Directories typically stored in files
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Directory Operations

• System calls for managing directories:
• Create

• Delete

• Opendir

• Closedir

• Readdir

• Rename

• Link

• Uplink
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File System Layout

• File systems define a block size (e.g., 4KB)
• Disk space is allocated in granularity of blocks

• A “Master Block” determines location of root directory
• Always at a well-known disk location

• Often replicated across disk for reliability

• A free map determines which blocks are free, allocated
• Usually a bitmap, one bit per block on the disk

• Also stored on disk, cached in memory for performance

• Remaining disk blocks used to store files (and dirs)
• There are many ways to do this
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File System Layout
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Disk Layout Strategies

• Files can span multiple disk blocks

• How do you find all of the blocks for a file?
1. Contiguous allocation

• Fast, simplifies directory access
• Inflexible, causes fragmentation, needs compaction

2. Linked structure
• Each block points to the next, directory points to the first
• Good for sequential access, bad for all others

3. Indexed structure (indirection, hierarchy)
• An “index block” contains pointers to many other blocks
• Handles random better, still good for sequential
• May need multiple index blocks (linked together)
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Contiguous Allocation
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Linked List Allocation
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Unix i-nodes

• Unix i-nodes implement an 
indexed structure for files

• Each i-node contains number of 
file block pointers

• Last block points to a block 
containing more disk-block 
addresses
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Sharing Files Between Directories

• Links (or hard links) in source_file
target_dir
• Simply create another link from target_dir to 

the inode of source_file (the inode is not 
duplicated)

• Now two directories have links to source_file

• What if we remove one?

• Now you understand why the system call to 
remove a file is named “unlink”?
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File Buffer Cache

• Applications exhibit significant locality for reading and writing files

• Idea: Cache file blocks in memory to capture locality
• This is called the file buffer cache

• Cache is system wide, used and shared by all processes

• Reading from the cache makes a disk perform like memory

• Even a 4 MB cache can be very effective

• Issues
• The file buffer cache competes with VM (tradeoff here)

• Like VM, it has limited size

• Need replacement algorithms again (LRU usually used)
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Keeping Track of Free Blocks

a) Storing the free list on a linked list

b) A bitmap
• A disk with n blocks requires a bitmap 

with n bits.

• Free blocks are represented by 1s in 
the map, allocated blocks by 0s (or 
vice versa).
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The MS-DOS File System
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New Technology File System (NTFS)
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The ext4 Journaling File System
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