
Scheduling
Platform Technologies

Based on Based on Tanenbaum, Modern Operating Systems

1

Who gets the CPU?

Based on Tanenbaum, Modern Operating Systems 3 e 2

Process Behaviour

a) CPU-boundprocesses spend most of their time computing

b) I/O boundprocesses spend most of their time waiting for I/O

Based on Tanenbaum, Modern Operating Systems 3 e 3

Multiprogramming

ÅOverlapping I/O and CPU activities
ÅTo increase CPU utilization and job throughput

ÅPreviously covered the mechanisms of
ÅContext switching

ÅProcess queues and process states

ÅBut…
Åwhich process (thread) to run, for how long, etc. –scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 4

Scheduling

ÅChoosing which process to run next, when two or more of them are
simultaneously in the ready state

ÅDeciding which process should occupy the resource (CPU, disk, etc.)

ÅDone by schedulerusing the scheduling algorithm

ÅMany of the same issues that apply to process scheduling also apply
to thread scheduling, although some are different.

ÅJobs- schedulable entities (processes, threads)

Based on Tanenbaum, Modern Operating Systems 3 e 5

When to schedule?

Åwhen a job exits

Åwhen a job blocks on I/O

Åwhen time slice expired
Åa hardware clock provides periodic

interrupts

Åwhen a new job is created
Åwhether to run the parent or the

child

Åwhen an I/O interrupt occurs
Åfrom an I/O device that has now

completed its work for a waiting job

Based on Tanenbaum, Modern Operating Systems 3 e 6

Performance Criteria

ÅThroughput
Ånumber of jobs completed in unit time

ÅTurnaround time (elapse time)
ÅAmount of time to execute a particular process from the time it entered

ÅWaiting time
ÅAmount of time process has been waiting in ready queue

ÅMeeting deadlines
ÅAvoid bad consequences

Based on Tanenbaum, Modern Operating Systems 3 e 7

Scheduling Objectives

ÅFair
ÅEveryone is happy

ÅPriority
ÅSome are more important

ÅEfficiency
ÅMake best use of equipment

ÅEncourage good behavior
ÅGood boy/girl

ÅSupport heavy load
ÅDegrade gracefully

ÅAdapt to different environment
ÅInteractive, real-time, multi-media

Based on Tanenbaum, Modern Operating Systems 3 e 8

Categories of Scheduling Algorithms

1. Batch
ÅPeriodic tasks –payroll, bills, interest calculation (at banks)
ÅNo users impatiently waiting
ÅPossibleto run for long time periods for each process without switching

2. Interactive
ÅFor environments with interactive users –personal computing, servers
ÅOne process cannot be hogging the CPU and denying service to the others

3. Real-time
ÅOnly programs that are intended to further the application at hand
ÅProcesses may not run for long and usually do their work and block quickly
ÅSo, it’s okay to let them finish

Based on Tanenbaum, Modern Operating Systems 3 e 9

Preemptive vs. Non-preemptive

ÅNon-preemptive scheduling
ÅThe running process keeps the CPU until it voluntarily gives up the CPU

ÅPreemptive scheduling
ÅThe running process can be interrupted and must release the CPU

Based on Tanenbaum, Modern Operating Systems 3 e 10

Scheduling Algorithm Goals

Based on Tanenbaum, Modern Operating Systems 3 e 11

Scheduling Algorithms

ÅBatch Systems
ÅFirst-Come, First-Served (FCFS)

ÅShort Job First (SJF)

ÅInteractive Systems
ÅRound-Robin Scheduling

ÅPriority Scheduling

ÅMulti-Queue & Multi-Level Feedback

ÅReal-time Systems
ÅEarliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 12

First-Come, First-Served (FCFS)

Å“Real-world” scheduling of people in lines (e.g., supermarket)

ÅA single queue of ready jobs

ÅJobs are scheduled in order of arrival to ready queue

ÅTypically non-preemptive(no context switching at market)

ÅJobs treated equally, no starvation.

ÅWhen the running process blocks, the first process on the queue is
run next.

ÅWhen a blocked process becomes ready, like a newly arrived job, it is
put on the end of the queue, behind all waiting processes.

Based on Tanenbaum, Modern Operating Systems 3 e 13

First-Come, First-Served – Example

Based on Tanenbaum, Modern Operating Systems 3 e 14

First-Come, First-Served – Problems

ÅAverage waiting time can be large
ÅIf small jobs wait behind long ones (high turnaround time)

ÅNon-preemptive

ÅYou’re stuck behind someone with a cart, when you only have two items

ÅSolution?
ÅExpress lane (10 items or less)

Based on Tanenbaum, Modern Operating Systems 3 e 15

Shortest Job First (SJF)

ÅChoose the job with the smallest expected duration first
ÅPerson with smallest number of items to buy

ÅRequirement
Åthe job duration needs to be known in advance

ÅUsed in Batch Systems

ÅOptimal for Average Waiting Time if all jobs are available
simultaneously

Based on Tanenbaum, Modern Operating Systems 3 e 16

Shortest Job First – Example

Based on Tanenbaum, Modern Operating Systems 3 e 17

FCFS vs. SJF

Based on Tanenbaum, Modern Operating Systems 3 e 18

Shortest Job First – Problems

ÅStarvation
Åa job is waiting forever

ÅAll jobs must be available at start
ÅSuited for batch systems

Based on Tanenbaum, Modern Operating Systems 3 e 19

Scheduling Algorithms

ÅBatch Systems
ÅFirst-Come, First-Served (FCFS)

ÅShort Job First (SJF)

ÅInteractive Systems
ÅRound-Robin Scheduling

ÅPriority Scheduling

ÅMulti-Queue & Multi-Level Feedback

ÅReal-time Systems
ÅEarliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 20

Round-Robin Scheduling

ÅOne of the oldest, simplest,
most commonly used scheduling
algorithm

ÅSelect process/thread from
ready queue in a round-robin
fashion (take turns)

Based on Tanenbaum, Modern Operating Systems 3 e 21

Round-Robin Scheduling – Example

Based on Tanenbaum, Modern Operating Systems 3 e 22

Round-Robin Scheduling – Problems

ÅTime slice too large
ÅFIFO behavior

ÅPoor response to short interactive requests

ÅTime slice too small
ÅToo many context switches (overheads)

ÅInefficient CPU utilization

ÅA quantum around 20–50 msecis often a reasonable compromise.

Based on Tanenbaum, Modern Operating Systems 3 e 23

Priority Scheduling

ÅNot all processes are equally important

ÅNeed to consider external factors

ÅEmail checking less priority than displaying video

Based on Tanenbaum, Modern Operating Systems 3 e 24

Multiple-level feedback queues (MLFQ)

ÅScheduling algorithms can be combined
ÅHave multiple queues

ÅUse a different algorithm among queues

ÅMove processes among queues

ÅMultiple queues representing different
job types
ÅInteractive, CPU-bound, batch, etc.

ÅQueues have priorities

ÅJobs can move among queues based upon
execution history

Based on Tanenbaum, Modern Operating Systems 3 e 25

Scheduling Algorithms

ÅBatch Systems
ÅFirst-Come, First-Served (FCFS)

ÅShort Job First (SJF)

ÅInteractive Systems
ÅRound-Robin Scheduling

ÅPriority Scheduling

ÅMulti-Queue & Multi-Level Feedback

ÅReal-time Systems
ÅEarliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 26

Earliest Deadline First (EDF)

ÅEach job has an arrival time and a deadline to finish
ÅAssignments, exams*

ÅAlways pick the job with the earliest deadline to run

Based on Tanenbaum, Modern Operating Systems 3 e 27

Thread Scheduling

ÅTwo levels of threads
ÅUser-level threads

ÅKernel-level threads

ÅUser-level threads
ÅKernel picks the process

ÅScheduler inside process picks thread

ÅKernel-level threads
ÅKernel picks a particular thread to run

ÅRequires a full context switch

Based on Tanenbaum, Modern Operating Systems 3 e 28

Thread Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 29

Scheduling Summary

ÅScheduler is the module that gets invoked when a context switch
needs to happen

ÅScheduling algorithm determines which process runs and where
processes are placed on queues

ÅScheduling algorithms have many goals
ÅUtilization, throughput, wait time, response time, etc.

ÅVarious algorithms to meet these goals
ÅFCFS/FIFO, SJF, RR, Priority

ÅCan combine algorithms
ÅMultiple-level feedback queues

Based on Tanenbaum, Modern Operating Systems 3 e 30

