
Scheduling
Platform Technologies

Based on Based on Tanenbaum, Modern Operating Systems

1

Who gets the CPU?

Based on Tanenbaum, Modern Operating Systems 3 e 2

Process Behaviour

a) CPU-bound processes spend most of their time computing

b) I/O bound processes spend most of their time waiting for I/O

Based on Tanenbaum, Modern Operating Systems 3 e 3

Multiprogramming

• Overlapping I/O and CPU activities
• To increase CPU utilization and job throughput

• Previously covered the mechanisms of
• Context switching

• Process queues and process states

• But…
• which process (thread) to run, for how long, etc. – scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 4

Scheduling

• Choosing which process to run next, when two or more of them are
simultaneously in the ready state

• Deciding which process should occupy the resource (CPU, disk, etc.)

• Done by scheduler using the scheduling algorithm

• Many of the same issues that apply to process scheduling also apply
to thread scheduling, although some are different.

• Jobs - schedulable entities (processes, threads)

Based on Tanenbaum, Modern Operating Systems 3 e 5

When to schedule?

• when a job exits

• when a job blocks on I/O

• when time slice expired
• a hardware clock provides periodic

interrupts

• when a new job is created
• whether to run the parent or the

child

• when an I/O interrupt occurs
• from an I/O device that has now

completed its work for a waiting job

Based on Tanenbaum, Modern Operating Systems 3 e 6

Performance Criteria

• Throughput
• number of jobs completed in unit time

• Turnaround time (elapse time)
• Amount of time to execute a particular process from the time it entered

• Waiting time
• Amount of time process has been waiting in ready queue

• Meeting deadlines
• Avoid bad consequences

Based on Tanenbaum, Modern Operating Systems 3 e 7

Scheduling Objectives

• Fair
• Everyone is happy

• Priority
• Some are more important

• Efficiency
• Make best use of equipment

• Encourage good behavior
• Good boy/girl

• Support heavy load
• Degrade gracefully

• Adapt to different environment
• Interactive, real-time, multi-media

Based on Tanenbaum, Modern Operating Systems 3 e 8

Categories of Scheduling Algorithms

1. Batch
• Periodic tasks – payroll, bills, interest calculation (at banks)
• No users impatiently waiting
• Possible to run for long time periods for each process without switching

2. Interactive
• For environments with interactive users – personal computing, servers
• One process cannot be hogging the CPU and denying service to the others

3. Real-time
• Only programs that are intended to further the application at hand
• Processes may not run for long and usually do their work and block quickly
• So, it’s okay to let them finish

Based on Tanenbaum, Modern Operating Systems 3 e 9

Preemptive vs. Non-preemptive

• Non-preemptive scheduling
• The running process keeps the CPU until it voluntarily gives up the CPU

• Preemptive scheduling
• The running process can be interrupted and must release the CPU

Based on Tanenbaum, Modern Operating Systems 3 e 10

Scheduling Algorithm Goals

Based on Tanenbaum, Modern Operating Systems 3 e 11

Scheduling Algorithms

• Batch Systems
• First-Come, First-Served (FCFS)

• Short Job First (SJF)

• Interactive Systems
• Round-Robin Scheduling

• Priority Scheduling

• Multi-Queue & Multi-Level Feedback

• Real-time Systems
• Earliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 12

First-Come, First-Served (FCFS)

• “Real-world” scheduling of people in lines (e.g., supermarket)

• A single queue of ready jobs

• Jobs are scheduled in order of arrival to ready queue

• Typically non-preemptive (no context switching at market)

• Jobs treated equally, no starvation.

• When the running process blocks, the first process on the queue is
run next.

• When a blocked process becomes ready, like a newly arrived job, it is
put on the end of the queue, behind all waiting processes.

Based on Tanenbaum, Modern Operating Systems 3 e 13

First-Come, First-Served – Example

Based on Tanenbaum, Modern Operating Systems 3 e 14

First-Come, First-Served – Problems

• Average waiting time can be large
• If small jobs wait behind long ones (high turnaround time)

• Non-preemptive

• You’re stuck behind someone with a cart, when you only have two items

• Solution?
• Express lane (10 items or less)

Based on Tanenbaum, Modern Operating Systems 3 e 15

Shortest Job First (SJF)

• Choose the job with the smallest expected duration first
• Person with smallest number of items to buy

• Requirement
• the job duration needs to be known in advance

• Used in Batch Systems

• Optimal for Average Waiting Time if all jobs are available
simultaneously

Based on Tanenbaum, Modern Operating Systems 3 e 16

Shortest Job First – Example

Based on Tanenbaum, Modern Operating Systems 3 e 17

FCFS vs. SJF

Based on Tanenbaum, Modern Operating Systems 3 e 18

Shortest Job First – Problems

• Starvation
• a job is waiting forever

• All jobs must be available at start
• Suited for batch systems

Based on Tanenbaum, Modern Operating Systems 3 e 19

Scheduling Algorithms

• Batch Systems
• First-Come, First-Served (FCFS)

• Short Job First (SJF)

• Interactive Systems
• Round-Robin Scheduling

• Priority Scheduling

• Multi-Queue & Multi-Level Feedback

• Real-time Systems
• Earliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 20

Round-Robin Scheduling

• One of the oldest, simplest,
most commonly used scheduling
algorithm

• Select process/thread from
ready queue in a round-robin
fashion (take turns)

Based on Tanenbaum, Modern Operating Systems 3 e 21

Round-Robin Scheduling – Example

Based on Tanenbaum, Modern Operating Systems 3 e 22

Round-Robin Scheduling – Problems

• Time slice too large
• FIFO behavior

• Poor response to short interactive requests

• Time slice too small
• Too many context switches (overheads)

• Inefficient CPU utilization

• A quantum around 20–50 msec is often a reasonable compromise.

Based on Tanenbaum, Modern Operating Systems 3 e 23

Priority Scheduling

• Not all processes are equally important

• Need to consider external factors

• Email checking less priority than displaying video

Based on Tanenbaum, Modern Operating Systems 3 e 24

Multiple-level feedback queues (MLFQ)

• Scheduling algorithms can be combined
• Have multiple queues

• Use a different algorithm among queues

• Move processes among queues

• Multiple queues representing different
job types
• Interactive, CPU-bound, batch, etc.

• Queues have priorities

• Jobs can move among queues based upon
execution history

Based on Tanenbaum, Modern Operating Systems 3 e 25

Scheduling Algorithms

• Batch Systems
• First-Come, First-Served (FCFS)

• Short Job First (SJF)

• Interactive Systems
• Round-Robin Scheduling

• Priority Scheduling

• Multi-Queue & Multi-Level Feedback

• Real-time Systems
• Earliest Deadline First Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 26

Earliest Deadline First (EDF)

• Each job has an arrival time and a deadline to finish
• Assignments, exams*

• Always pick the job with the earliest deadline to run

Based on Tanenbaum, Modern Operating Systems 3 e 27

Thread Scheduling

• Two levels of threads
• User-level threads

• Kernel-level threads

• User-level threads
• Kernel picks the process

• Scheduler inside process picks thread

• Kernel-level threads
• Kernel picks a particular thread to run

• Requires a full context switch

Based on Tanenbaum, Modern Operating Systems 3 e 28

Thread Scheduling

Based on Tanenbaum, Modern Operating Systems 3 e 29

Scheduling Summary

• Scheduler is the module that gets invoked when a context switch
needs to happen

• Scheduling algorithm determines which process runs and where
processes are placed on queues

• Scheduling algorithms have many goals
• Utilization, throughput, wait time, response time, etc.

• Various algorithms to meet these goals
• FCFS/FIFO, SJF, RR, Priority

• Can combine algorithms
• Multiple-level feedback queues

Based on Tanenbaum, Modern Operating Systems 3 e 30

