
Real Time Operating Systems
(RTOS)

ET2223 Microprocessors, Microcontrollers, and Embedded Systems

Based on content by
Subhashis Banerjee, Indian Institute of Technology, Delhi &

Akos Ledeczi, Vanderbilt University

2019/08/27 ET2223 1

Fire alarm system: An example

Central server

TCP/IP over radio

Controllers: ARM based

Low bandwidth radio links

Sensors: microcontroller based

2019/08/27 ET2223 2

Fire alarm system: An example

• Problem
• Hundreds of sensors, each fitted with Low Range Wireless

• Sensor information to be logged in a server & appropriate action initiated

• Possible Solution
• Collaborative Action

• Routing
• Dynamic – Sensors/controllers may go down

• Auto Configurable – No/easy human intervention.

• Less Collision/Link Clogging

• Less number of intermediate nodes – Fast Response Time

• Secure

2019/08/27 ET2223 3

Real Time Systems

• A system is said to be Real Time if it is required to complete it’s work
and deliver it’s services on time.

• Example – Flight Control System
• All tasks in that system must execute on time.

• Non Example – PC system

2019/08/27 ET2223 4

Embedded vs. Real Time Systems

• Embedded system:
• A computer system that performs a limited set of specific functions.

• It often interacts with its environment.

• Real Time Systems:
• Correctness of the system depends not only on the logical results, but also on

the time in which the results are produced.

2019/08/27 ET2223 5

Embedded
Systems

Real Time
Systems

Examples?

Examples

• Real Time Embedded:
• Nuclear reactor control; Flight control; Basically any safety critical system
• GPS; Mobile phone

• Real Time, but not Embedded:
• Stock trading system
• Skype

• Embedded, but not Real Time:
• Home temperature control
• Sprinkler system
• Washing machine, refrigerator, etc.
• Blood pressure meter

2019/08/27 ET2223 6

Characteristics of Real Time Systems

• Event-driven, reactive

• High cost of failure

• Concurrency/multiprogramming

• Stand-alone/continuous operation

• Reliability/fault-tolerance requirements

• Predictable behavior

2019/08/27 ET2223 7

What’s Important in Real Time Systems

• Metrics for real-time systems differ from that for time-sharing systems.

• schedulability is the ability of tasks to meet all hard deadlines
• latency is the worst-case system response time to events
• stability in overload means the system meets critical deadlines even if all deadlines cannot be met

2019/08/27 ET2223 8

Time-Sharing
Systems

Real-Time
Systems

Capacity High throughput Schedulability

Responsiveness Fast average response Ensured worst-case

response

Overload Fairness Stability

Hard and Soft Real Time Systems
(Qualitative Definition)
• Hard Real Time System

• Failure to meet deadlines is fatal

• example : Flight Control System

• Soft Real Time System
• Late completion of jobs is undesirable but not fatal.

• System performance degrades as more & more jobs miss deadlines

• Online Databases

2019/08/27 ET2223 9

Hard and Soft Real Time Systems
(Operational Definition)
• Hard Real Time System

• Validation by provably correct procedures or extensive simulation that the
system always meets the timings constraints

• Soft Real Time System
• Demonstration of jobs meeting some statistical constraints suffices.

• Example – Multimedia System
• 25 frames per second on an average

2019/08/27 ET2223 10

Role of an OS in Real Time Systems

• Standalone Applications
• Often no OS involved

• Micro controller based Embedded Systems

• Some Real Time Applications are huge & complex
• Multiple threads

• Complicated Synchronization Requirements

• Filesystem / Network / Windowing support

• OS primitives reduce the software design time

• Real Time Operating System (RTOS)

2019/08/27 ET2223 11

Features of RTOS

• Scheduling

• Resource Allocation

• Interrupt Handling

• Other issues like kernel size

2019/08/27 ET2223 12

Scheduling in RTOS

• More information about the tasks are known
• No of tasks

• Resource Requirements

• Release Time

• Execution time

• Deadlines

• Being a more deterministic system better scheduling algorithms can
be devised.

2019/08/27 ET2223 13

Scheduling Algorithms in RTOS

• Clock Driven Scheduling
• All parameters about jobs (release time/ execution time/deadline) known in

advance.

• Weighted Round Robin Scheduling
• Jobs scheduled in FIFO manner

• Example use : High speed switching network

• Priority Scheduling
• Processor allocated to processes according to priorities

• (Greedy / List / Event Driven)

2019/08/27 ET2223 14

Priority Scheduling

• Earliest Deadline First (EDF)
• Process with earliest deadline given highest priority

• Least Slack Time First (LSF)
• slack = relative deadline – execution left

• Rate Monotonic Scheduling (RMS)
• For periodic tasks

• Tasks priority inversely proportional to it’s period

2019/08/27 ET2223 15

Resource Allocation in RTOS

• Resource Allocation
• The issues with scheduling applicable here.

• Resources can be allocated in
• Weighted Round Robin

• Priority Based

• Some resources are non preemptible
• Example : semaphores

• Priority Inversion if priority scheduling is used

2019/08/27 ET2223 16

Other RTOS issues

• Interrupt Latency should be very small
• Kernel has to respond to real time events

• Interrupts should be disabled for minimum possible time

• For embedded applications Kernel Size should be small
• Should fit in ROM

• Sophisticated features can be removed
• No Virtual Memory

• No Protection

2019/08/27 ET2223 17

RTOS Examples
Includes content from:

Introduction to Real Time OSes by Mark Brehob

Introduction to FreeRTOS V6.0.5 by Amr Ali Abdel-Naby

The mC/OS-II Real-Time Operating System by NC State University

2019/08/27 ET2223 18

RTLinux

2019/08/27 ET2223 19

Linux for Real Time Applications

• Scheduling
• Priority Driven Approach

• Optimize average case response time

• Interactive Processes Given Highest Priority
• Aim to reduce response times of processes

• Real Time Processes
• Processes with high priority

• No notion of deadlines

• Resource Allocation
• No support for handling priority inversion

2019/08/27 ET2223 20

Interrupt Handling in Linux

• Interrupts are disabled in ISR/critical sections of the kernel

• No worst case bound on interrupt latency avaliable
• eg: Disk Drivers may disable interrupt for few hundred milliseconds

• Not suitable for Real Time Applications
• Interrupts may be missed

2019/08/27 ET2223 21

Other Problems with Linux

• Processes are non preemtible in Kernel Mode
• System calls like fork take a lot of time

• High priority thread might wait for a low priority thread to complete it’s
system call

• Processes are heavy weight
• Context switch takes several hundred microseconds

2019/08/27 ET2223 22

RTLinux

• Real Time Kernel at the lowest level

• Linux Kernel is a low priority thread
• Executed only when no real time tasks

• Interrupts trapped by the Real Time Kernel and passed onto Linux
Kernel
• Software emulation to hardware interrupts

• Interrupts are queued by RTLinux

• Software emulation to disable_interrupt()

2019/08/27 ET2223 23

RTLinux (contd)

• Real Time Tasks
• Statically allocate memory

• No address space protection

• Non Real Time Tasks are developed in Linux

• Communication
• Queues

• Shared memory

2019/08/27 ET2223 24

RTLinux Framework

2019/08/27 ET2223 25

RTX

2019/08/27 ET2223 26

RTX

• Royalty-free, deterministic, open source RTOS

• High-Speed real-time operation with low interrupt latency

• Flexible Scheduling: round-robin, pre-emptive, and collaborative

• Small footprint for resource constrained systems

• Compatible with ARM cores (from ARM7, ARM9 to Cortex-M
processors) and software tools (Keil MDK-ARM)

• Support for multithreading and thread-safe operation

• Kernel aware debug support in Keil MDK-ARM

• Dialog-based setup using µVision Configuration Wizard

2019/08/27 ET2223 27

RTX Structure

• Keil Real-Time Library (RTL)
• RTX Kernel
• Flash file system
• Networking
• CAN interface
• USB device interface

• RTX Kernel
• Scheduler is the core of the RTX kernel
• Supports for mutex, memory pool, mailbox, timing functions, events and

semaphores

2019/08/27 ET2223 28

µC/OS
Pronounced “micro C OS”, a full-featured embedded operating system.

µC/OS-II and µC/OS-III are pre-emptive, highly portable, and scalable real-time kernels.

https://www.micrium.com/rtos/

2019/08/27 ET2223 29

https://www.micrium.com/rtos/

Task States

• Five possible states for a tasks:
• Dormant – not yet visible to OS

(use OSTaskCreate(), etc.)

• Ready

• Running

• Waiting

• ISR – preempted by an Interrupt
Service Routine (ISR)

Ready

Running

Waiting

Dormant

ISR2019/08/27 ET2223 30

Task Scheduling

• Scheduler runs highest-priority task using OSSched()
• OSRdyTbl has a set bit for each ready task

• Checks to see if context switch is needed

• Macro OS_TASK_SW performs context switch
• Implemented as software interrupt which points to OSCtxSw

• Save registers of task being switched out

• Restore registers of task being switched in

2019/08/27 ET2223 31

Task Scheduling

• Scheduler locking
• Can lock scheduler to prevent other tasks from running (ISRs can still run)

• OSSchedLock()

• OSSchedUnlock()

• Nesting of OSSchedLock possible

• Don’t lock the scheduler and then perform a system call which could put your
task into the WAITING state!

• Idle task
• Runs when nothing else is ready

• Automatically has prioirty OS_LOWEST_PRIO

• Only increments a counter for use in estimating processor idle time

2019/08/27 ET2223 32

Task States

• Task status OSTCBStat
/* TASK STATUS (Bit definition for OSTCBStat) */

#define OS_STAT_RDY 0x00 /* Ready to run */

#define OS_STAT_SEM 0x01 /* Pending on semaphore */

#define OS_STAT_MBOX 0x02 /* Pending on mailbox */

#define OS_STAT_Q 0x04 /* Pending on queue */

#define OS_STAT_SUSPEND 0x08 /* Task is suspended */

2019/08/27 ET2223 33

Enabling Interrupts

• Macros OS_ENTER_CRITICAL, OS_EXIT_CRITICAL

• Note: three methods are provided in os_cpu.h
• #1 doesn’t restore interrupt state, just renables interrupts

• #2 saves and restores state, but stack pointer must be same at enter/exit
points – use this one!

• #3 uses a variable to hold state
• Is not reentrant

• Should be a global variable, not declared in function StartSystemTick()

2019/08/27 ET2223 34

System Clock Tick

• OS needs periodic timer for time delays and timeouts

• Recommended frequency 10-200 Hz
• trade off overhead vs. response time (and accuracy of delays)

• Must enable these interrupts after calling OSStart()

• OSTick() ISR
• Calls OSTimeTick()

• Calls hook to a function of your choosing
• Decrements non-zero delay fields (OSTCBDly) for all task control blocks
• If a delay field reaches zero, make task ready to run (unless it was suspended)

• Increments counter variable OSTime (32-bit counter)
• Then returns from interrupt

• Interface
• OSTimeGet(): Ticks (OSTime value) since OSStart was called
• OSTimeSet(): Set value of this counter

2019/08/27 ET2223 35

Overview of Writing an Application

• Scale the OS resources to match the application
• See os_cfg.h

• Define a stack for each task

• Write tasks

• Write ISRs

• Write main() to Initialize and start up the OS (main.c)
• Initialize MCU, display, OS
• Start timer to generate system tick
• Create semaphores, etc.
• Create tasks
• Call OSStart()

2019/08/27 ET2223 36

Configuration and Scaling

• For efficiency and code size, default version of OS supports limited
functionality and resources

• When developing an application, must verify these are sufficient (or
may have to track down strange bugs)
• Can’t just blindly develop program without considering what’s available

• Edit os_cfg.h to configure the OS to meet your application’s needs
• # events, # tasks, whether mailboxes are supported, etc.

2019/08/27 ET2223 37

Task Creation

• OSTaskCreate() in os_task.c
• Create a task
• Arguments: pointer to task code (function), pointer to argument, pointer to

top of stack (use TOS macro), desired priority (unique)

• OSTaskCreateExt() in os_task.c
• Create a task
• Arguments: same as for OSTaskCreate(), plus

• id: user-specified unique task identifier number
• pbos: pointer to bottom of stack. Used for stack checking (if enabled).
• stk_size: number of elements in stack. Used for stack checking (if enabled).
• pext: pointer to user-supplied task-specific data area (e.g. string with task name)
• opt: options to control how task is created.

2019/08/27 ET2223 38

More Task Management

• OSTaskSuspend()
• Task will not run again until after it is resumed
• Sets OS_STAT_SUSPEND flag, removes task from ready list if there
• Argument: Task priority (used to identify task)

• OSTaskResume()
• Task will run again once any time delay expires and task is in ready queue
• Clears OS_STAT_SUSPEND flag
• Argument: Task priority (used to identify task)

• OSTaskDel()
• Sets task to DORMANT state, so no longer scheduled by OS
• Removed from OS data structures: ready list, wait lists for semaphores/mailboxes/queues, etc.

• OSTaskChangePrio()
• Identify task by (current) priority
• Changes task’s priority

• OSTaskQuery()
• Identify task by priority
• Copies that task’s TCB into a user-supplied structure
• Useful for debugging

2019/08/27 ET2223 39

FreeRTOS
Market Leading, De-facto Standard and Cross Platform RTOS kernel for embedded devices.

Ported to 35 microcontroller platforms, distributed under the MIT License.

https://www.freertos.org/

2019/08/27 ET2223 40

https://www.freertos.org/

Source Code

• High quality

• Neat

• Consistent

• Organized

• Commented

2019/08/27 ET2223 41

Portable

• Highly portable C

• 35 architectures supported

• Assembly is kept minimum

• Ports are freely available in
source code

• Other contributions do exist

2019/08/27 ET2223 42Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Scalable

• Only use the services you only
need.
• FreeRTOSConfig.h

• Pretty darn small for what you
get.
• ~6000 lines of code (including a lot

of comments, maybe half that
without?)

• Minimum footprint = 4 KB

2019/08/27 ET2223 43

Preemptive and Cooperative Scheduling

• Preemptive scheduling:
• Fully preemptive
• Always runs the highest priority task that is ready to run
• Comparable with other preemptive kernels
• Used in conjunction with tasks

• Cooperative scheduling:
• Context switch occurs if:

• A task/co-routine blocks
• Or a task/co-routine yields the CPU

• Used in conjunction with tasks/co-routines

2019/08/27 ET2223 44

Multitasking

• No software restriction on:
• # of tasks that can be created

• # of priorities that can be used

• Priority assignment
• More than one task can be assigned the same priority.

• RR with time slice = 1 RTOS tick

2019/08/27 ET2223 45

Advanced Features

• Execution tracing

• Run time statistics collection

• Memory management

• Memory protection support

• Stack overflow protection

2019/08/27 ET2223 46

Device support in related products

• Connect Suite from High Integrity Systems
• TCP/IP stack

• USB stack
• Host and device

• File systems
• DOS compatible FAT

2019/08/27 ET2223 47

Task status in FreeRTOS

• Running
• Task is actually executing

• Ready
• Task is ready to execute but a task

of equal or higher priority is
Running.

2019/08/27 ET2223 48

Task status in FreeRTOS

• Blocked
• Task is waiting for some event.

• Time: if a task calls vTaskDelay() it will
block until the delay period has
expired.

• Resource: Tasks can also block waiting
for queue and semaphore events.

• Suspended
• Much like blocked, but not waiting for

anything.
• Tasks will only enter or exit the

suspended state when explicitly
commanded to do so through the
vTaskSuspend() and xTaskResume()
API calls respectively.

2019/08/27 ET2223 49

RTOS for Arduino
Real Time Operating Systems (RTOS) for ATmega

2019/08/27 ET2223 50

Arduino and the Bootloader

• Arduino, the ATmega variant, lacks an OS

• Rather, a simple program:
• Waits for a new incoming sketch over serial.

• If a new sketch is uploaded, the bootloader loads it into flash memory.

• If no new sketch is received, jumps to memory beyond the bootloader (i.e.
the current sketch) and executes it.

2019/08/27 ET2223 51

The Big Loop

• Once execution moves past the bootloader, the master loop is
entered.

• There is a single “thread” of execution.

• Functions that need to be executed in the background can be
implemented via ISRs.

• May be entirely appropriate for certain applications!
• Ask yourself,

• Does the app in question need multiple threads of execution?

• Do I really need a RTOS?

2019/08/27 ET2223 52

RTOS – Advantages

• Built-in support for threads
• Though the processor only handles on thing at a time, rapid switching gives

the illusion of simultaneous execution

• Can result in more efficient use of processor time (assuming efficient
scheduling)

• Enables integration of numerous modules. Developers have
confidence that threads will be managed efficiently and safely.

2019/08/27 ET2223 53

RTOS – Advantages

• Threading syntactically more accessible to developers, who may be
intimidated / put off by interrupts.

• Formal prioritization of threading (if present) can ensure high priority
threads don’t wait on those that are less important

2019/08/27 ET2223 54

RTOS – Disadvantages

• Memory Footprint
• The RTOS and application code for managing threads will, undoubtedly

consume extra memory

• Processor Overhead
• Incurred during thread management, etc.

• Priority Inversion
• If the RTOS doesn’t have built-in prioritization and a mechanism for enforcing

it, a higher-priority thread can find itself waiting for one of lower priority

2019/08/27 ET2223 55

RTOS – Disadvantages

• Deadlock
• In any multi-threaded system, the danger of deadlocks arising from resource

contention is an issue

• Complexity
• Coding and debugging can be more difficult when threads are involved

• Learning curve
• In addition the programming language, OS-specific calls and syntax must be

learned

2019/08/27 ET2223 56

Other RTOS’s

• LynxOS
• Microkernel Architecture

• Kernel provides scheduling/interrupt handling

• Additional features through Kernel Plug Ins(KPIs)
• TCP/IP stack , Filesystem

• KPI’s are multithreaded

• Memory Protection/ Demand Paging Optional

• Development and Deployment on the same host
• OS support for compilers/debuggers

2019/08/27 ET2223 57

Other RTOS’s (contd)

• VxWorks
• Monolithic Architecture

• Real Time Posix compliant

• Cross development System

• pSOS
• Object Oriented OS

2019/08/27 ET2223 58

Embedded RTOS Examples

• FreeRTOS
• http://www.freertos.org/a00098.html
• Boasts support for numerous devices

• Support for ATMega seems limited

• Threading
• Unlimited # of tasks
• Unlimited # of priorities and flexible assignment

• Femto OS
• http://www.femtoos.org/
• Small footprint
• Wide Atmel support

2019/08/27 ET2223 59

http://www.freertos.org/a00098.html
http://www.femtoos.org/

Embedded RTOS Examples

• Nut/OS
• http://www.ethernut.de/en/software/index.html
• Support for numerous ATMega versions
• Two relevant implementations

• EtherNut for wired networking
• BTNut for wireless communication via Bluetooth

• DuinOS
• https://github.com/DuinOS/DuinOS
• RTOS for Arduino
• “Native” to Arduino and meant for use in Arduino programming environment
• Good Code Example using “task loops”

2019/08/27 ET2223 60

http://www.ethernut.de/en/software/index.html
https://github.com/DuinOS/DuinOS

