Real Time Operating Systems
(RTOS)

ET2223 Microprocessors, Microcontrollers, and Embedded Systems

Based on content by
Subhashis Banerjee, Indian Institute of Technology, Delhi &
Akos Ledeczi, Vanderbilt University

Fire alarm system: An example

Central server
TCP/IP over radio

Controllers: ARM based

Low bandwidth radio links

Sensors: microcontroller based

2019/08/27 ET2223

Fire alarm system: An example

 Problem

 Hundreds of sensors, each fitted with Low Range Wireless
* Sensor information to be logged in a server & appropriate action initiated

e Possible Solution

* Collaborative Action
* Routing
* Dynamic — Sensors/controllers may go down
» Auto Configurable — No/easy human intervention.
* Less Collision/Link Clogging
e Less number of intermediate nodes — Fast Response Time
* Secure

Real Time Systems

* A system is said to be Real Time if it is required to complete it’s work
and deliver it’s services on time.

* Example — Flight Control System
 All tasks in that system must execute on time.

* Non Example — PC system

Embedded vs. Real Time Systems

* Embedded system:
* A computer system that performs a limited set of specific functions.
* |t often interacts with its environment.

* Real Time Systems:

* Correctness of the system depends not only on the logical results, but also on
the time in which the results are produced.

Real Time Embedded

Systems Systems

Examples?

Examples

* Real Time Embedded:
* Nuclear reactor control; Flight control; Basically any safety critical system
* GPS; Mobile phone

e Real Time, but not Embedded:

e Stock trading system
» Skype

* Embedded, but not Real Time:
* Home temperature control
* Sprinkler system
* Washing machine, refrigerator, etc.
* Blood pressure meter

Characteristics of Real Time Systems

e Event-driven, reactive

* High cost of failure

e Concurrency/multiprogramming
 Stand-alone/continuous operation

* Reliability/fault-tolerance requirements
* Predictable behavior

What’s Important in Real Time Systems

* Metrics for real-time systems differ from that for time-sharing systems.

Time-Sharing Real-Time
Systems Systems
Capacity High throughput Schedulability

Responsiveness | Fast average response | Ensured worst-case
response

Overload Fairness Stability

* schedulability is the ability of tasks to meet all hard deadlines
* latency is the worst-case system response time to events
* stability in overload means the system meets critical deadlines even if all deadlines cannot be met

Hard and Soft Real Time Systems
(Qualitative Definition)

* Hard Real Time System
* Failure to meet deadlines is fatal
e example : Flight Control System

* Soft Real Time System
* Late completion of jobs is undesirable but not fatal.
» System performance degrades as more & more jobs miss deadlines

* Online Databases

Hard and Soft Real Time Systems
(Operational Definition)

* Hard Real Time System

 Validation by provably correct procedures or extensive simulation that the
system always meets the timings constraints

* Soft Real Time System
 Demonstration of jobs meeting some statistical constraints suffices.

* Example — Multimedia System
e 25 frames per second on an average

Role of an OS in Real Time Systems

* Standalone Applications

e Often no OS involved
* Micro controller based Embedded Systems

* Some Real Time Applications are huge & complex
* Multiple threads
* Complicated Synchronization Requirements
* Filesystem / Network / Windowing support
* OS primitives reduce the software design time

* Real Time Operating System (RTOS)

Features of RTOS

* Scheduling

* Resource Allocation

* Interrupt Handling

e Other issues like kernel size

Scheduling in RTOS

* More information about the tasks are known
* No of tasks
* Resource Requirements
* Release Time
* Execution time
* Deadlines

* Being a more deterministic system better scheduling algorithms can
be devised.

Scheduling Algorithms in RTOS

* Clock Driven Scheduling

» All parameters about jobs (release time/ execution time/deadline) known in
advance.

* Weighted Round Robin Scheduling

* Jobs scheduled in FIFO manner
* Example use : High speed switching network

* Priority Scheduling
* Processor allocated to processes according to priorities
* (Greedy / List / Event Driven)

Priority Scheduling

* Earliest Deadline First (EDF)
* Process with earliest deadline given highest priority

 Least Slack Time First (LSF)

e slack = relative deadline — execution left

* Rate Monotonic Scheduling (RMS)

* For periodic tasks
* Tasks priority inversely proportional to it’s period

Resource Allocation in RTOS

 Resource Allocation
* The issues with scheduling applicable here.

e Resources can be allocated in
* Weighted Round Robin
* Priority Based

* Some resources are non preemptible
* Example : semaphores

* Priority Inversion if priority scheduling is used

Other RTOS issues

* Interrupt Latency should be very small

* Kernel has to respond to real time events
* Interrupts should be disabled for minimum possible time

* For embedded applications Kernel Size should be small
e Should fit in ROM

* Sophisticated features can be removed

* No Virtual Memory
* No Protection

RTOS Examples

Includes content from:

Introduction to Real Time OSes by Mark Brehob

Introduction to FreeRTOS V6.0.5 by Amr Ali Abdel-Naby

The mC/OS-II Real-Time Operating System by NC State University

2019/08/27 ET2223

18

RTLINuUX

Linux for Real Time Applications

* Scheduling
* Priority Driven Approach
* Optimize average case response time

* Interactive Processes Given Highest Priority
* Aim to reduce response times of processes

 Real Time Processes
* Processes with high priority
 No notion of deadlines

* Resource Allocation
* No support for handling priority inversion

Interrupt Handling in Linux

* Interrupts are disabled in ISR/critical sections of the kernel

* No worst case bound on interrupt latency avaliable
» eg: Disk Drivers may disable interrupt for few hundred milliseconds

* Not suitable for Real Time Applications
* Interrupts may be missed

Other Problems with Linux

* Processes are non preemtible in Kernel Mode
» System calls like fork take a lot of time

* High priority thread might wait for a low priority thread to complete it’s
system call

* Processes are heavy weight
e Context switch takes several hundred microseconds

RTLINUX

e Real Time Kernel at the lowest level

* Linux Kernel is a low priority thread
* Executed only when no real time tasks

* Interrupts trapped by the Real Time Kernel and passed onto Linux
Kernel
» Software emulation to hardware interrupts

* Interrupts are queued by RTLinux
» Software emulation to disable_interrupt()

RTLinux (contd)

* Real Time Tasks
 Statically allocate memory
* No address space protection

* Non Real Time Tasks are developed in Linux

e Communication

* Queues
* Shared memory

RTLinux Framework

Hardware layer

Dhisabled Lhterropls ave hevelr disabled

Lhlerr

Queoed .
Hardwale E.TL]“U-:’;.
Emmolalol
1
Lhterropt
Chsable
RS "y "y "y
Mative Beal Beal Beal
Linux Tiioe Tioe Tioe
Kernel Task Task Task
" A A i

RTX

RTX

* Royalty-free, deterministic, open source RTOS

* High-Speed real-time operation with low interrupt latency

* Flexible Scheduling: round-robin, pre-emptive, and collaborative
* Small footprint for resource constrained systems

 Compatible with ARM cores (from ARM7, ARM9 to Cortex-M
processors) and software tools (Keil MDK-ARM)

e Support for multithreading and thread-safe operation
e Kernel aware debug support in Keil MDK-ARM
* Dialog-based setup using uVision Configuration Wizard

RTX Structure

Real-Time Library

* Keil Real-Time Library (RTL) s:Lt.':n fiuiﬂ
 RTX Kernel —
* Flash file system
* Networking
e CAN interface

e USB device interface
RTX Kernel

utex MY mailbox DY B phare
¢ RTX Kernel Scheduler
e Scheduler is the core of the RTX kernel

e Supports for mutex, memory pool, mailbox, timing functions, events and
semaphores

2019/08/27 ET2223 28

1C/0OS

Pronounced “micro C 0S”, a full-featured embedded operating system.
UC/0S-Il and uC/OS-IIl are pre-emptive, highly portable, and scalable real-time kernels.

https://www.micrium.com/rtos/

2019/08/27 ET2223

29

https://www.micrium.com/rtos/

Task States

* Five possible states for a tasks:

* Dormant — not yet visible to OS
(use OSTaskCreate(), etc.)

* Ready

* Running

* Waiting Waiting

* ISR — preempted by an Interrupt
Service Routine (ISR)

2019/08/27 ET2223

Dormant

Running

30

Task Scheduling

e Scheduler runs highest-priority task using OSSched()
* OSRdyTbl has a set bit for each ready task
* Checks to see if context switch is needed

 Macro OS_TASK SW performs context switch
* Implemented as software interrupt which points to OSCtxSw
e Save registers of task being switched out
* Restore registers of task being switched in

Task Scheduling

* Scheduler locking

e Can lock scheduler to prevent other tasks from running (ISRs can still run)
e OSSchedLock()
e OSSchedUnlock()

* Nesting of OSSchedLock possible

* Don’t lock the scheduler and then perform a system call which could put your
task into the WAITING state!

* |dle task
* Runs when nothing else is ready
* Automatically has prioirty OS_LOWEST _PRIO
* Only increments a counter for use in estimating processor idle time

Task States

e Task status OSTCBStat
/* TASK STATUS (Bit definition for OSTCBStat)

#define
#define
#define
#define
#define

OS_STAT_RDY
OS_STAT_SEM
OS_STAT_MBOX
OS_STAT_Q
OS_STAT_SUSPEND

0x00
Ox01
0x02
0x04
0x08

T332

* Ready to run
* Pending
* Pending
* Pending
* Task 1s

on semaphore *

on mailbox
on queue
suspended

]]] I I
bl bl bl bl bl

Enabling Interrupts

» Macros OS_ENTER_CRITICAL, OS_EXIT CRITICAL

* Note: three methods are provided in os_cpu.h
* #1 doesn’t restore interrupt state, just renables interrupts

* #2 saves and restores state, but stack pointer must be same at enter/exit
points — use this one!
* #3 uses a variable to hold state
* |s not reentrant
» Should be a global variable, not declared in function StartSystemTick()

System Clock Tick

OS needs periodic timer for time delays and timeouts
Recommended frequency 10-200 Hz

 trade off overhead vs. response time (and accuracy of delays)
Must enable these interrupts after calling OSStart()

OSTick() ISR
e Calls OSTimeTick()

e Calls hook to a function of your choosing
* Decrements non-zero delay fields (OSTCBDIy) for all task control blocks
» |If a delay field reaches zero, make task ready to run (unless it was suspended)

* Increments counter variable OSTime (32-bit counter)
* Then returns from interrupt

Interface
 OSTimeGet(): Ticks (OSTime value) since OSStart was called
* OSTimeSet(): Set value of this counter

Overview of Writing an Application

 Scale the OS resources to match the application
e See os_cfg.h

e Define a stack for each task
e Write tasks
 Write ISRs

* Write main() to Initialize and start up the OS (main.c)
* |Initialize MCU, display, OS
 Start timer to generate system tick
* Create semaphores, etc.

* Create tasks
e Call OSStart()

Configuration and Scaling

* For efficiency and code size, default version of OS supports limited
functionality and resources

* When developing an application, must verify these are sufficient (or
may have to track down strange bugs)
e Can’tjust blindly develop program without considering what’s available

 Edit os_cfg.h to configure the OS to meet your application’s needs
* # events, # tasks, whether mailboxes are supported, etc.

Task Creation

e OSTaskCreate() in os_task.c

e Create a task

* Arguments: pointer to task code (function), pointer to argument, pointer to
top of stack (use TOS macro), desired priority (unique)

e OSTaskCreateExt() in os_task.c

e Create a task

* Arguments: same as for OSTaskCreate(), plus
 id: user-specified unique task identifier number
e pbos: pointer to bottom of stack. Used for stack checking (if enabled).
» stk_size: number of elements in stack. Used for stack checking (if enabled).
e pext: pointer to user-supplied task-specific data area (e.g. string with task name)
e opt: options to control how task is created.

More Task Management

* OSTaskSuspend()

* Task will not run again until after it is resumed
* Sets OS_STAT SUSPEND flag, removes task from ready list if there
* Argument: Task priority (used to identify task)

* OSTaskResume()
* Task will run again once any time delay expires and task is in ready queue
* Clears OS_STAT SUSPEND flag
* Argument: Task priority (used to identify task)

* OSTaskDel()
* Sets task to DORMANT state, so no longer scheduled by OS
* Removed from OS data structures: ready list, wait lists for semaphores/mailboxes/queues, etc.

* OSTaskChangePrio()
* |dentify task by (current) priority
* Changes task’s priority

* OSTaskQuery()
* Identify task by priority
* Copies that task’s TCB into a user-supplied structure
* Useful for debugging

FreeRTOS

Market Leading, De-facto Standard and Cross Platform RTOS kernel for embedded devices.
Ported to 35 microcontroller platforms, distributed under the MIT License.

https://www.freertos.org/

2019/08/27 ET2223 40

https://www.freertos.org/

SO u rce COd e signed portBASE TYPE xTaskRemoveFromEventlList({ const xlist * const pxEventlist)

1
tskTCE *pxUnblockedTCE;

portBASE_TYPE xReturn;

. . - J* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED OR THE
o ngh quallty SCHEDULER SUSPEMDED. It can also be called from within an ISR. */

/* The event list is sorted in priority order, so we can remove the
® Neat first in the list, remowe the TCBE from the delayed list, and add
it to the ready list.

® ConSIStent If an event is for a queue that is locked then this function will newver

get called - the lock count on the queue will get modified instead. This
means we can always expect exclusive access to the event list here.

° I |
Organlzed This function assumes that a check has already been made to ensure that

pxEventlist is not empty. */
pxUnblockedTCB = (tskTCB *) 1istGET_OWNER_OF HEAD_ENTRY(pxEventlist);

¢ Commented configASSERT(pxUnblockedTCB)

vListRemove(&(pxUnblockedTCB-»xEventListItem));

if({ uxSchedulerSuspended == { unsigned portBASE _TYPE) pdFALSE)

1
vListRemove({ &(pxUnblockedTCB-:>xGenericlistItem));
prvaddTaskToReadyQueue{ pxUnblockedTCE) ;
¥
else
1
/* We cannot access the delayed or ready lists, so will hold this
task pending until the scheduler is resumed. */
vListInsertEnd({ xList *) &(xPendingReadylist), &(pxUnblockedTCB-»xEventListItem));
¥

2019/08/27 ET2223 41

Portable

* Highly portable C
* 35 architectures supported
e Assembly is kept minimum

* Ports are freely available in
source code

e Other contributions do exist

2019/08/27 Amr Ali Abdel-Naby@2010

-

Z“ freescale

semiconductor

ARM HL°

AIMEL B
—————— 7}

Introductionto FreeRTOS V6.0.5

42

Scalable

* Only use the services you only
need.

* FreeRTOSConfig.h

* Pretty darn small for what you
get.

* ~6000 lines of code (including a lot
of comments, maybe half that
without?)

* Minimum footprint = 4 KB

2019/08/27 ET2223 43

Preemptive and Cooperative Scheduling

* Preemptive scheduling:
* Fully preemptive
* Always runs the highest priority task that is ready to run
* Comparable with other preemptive kernels
* Used in conjunction with tasks

* Cooperative scheduling:

* Context switch occurs if:
* A task/co-routine blocks
* Or a task/co-routine yields the CPU

e Used in conjunction with tasks/co-routines

Multitasking

 No software restriction on:
e # of tasks that can be created
 # of priorities that can be used

* Priority assignment
* More than one task can be assighed the same priority.
* RR with time slice = 1 RTOS tick

Advanced Features

* Execution tracing

* Run time statistics collection
* Memory management

* Memory protection support

« Stack overflow protection

Device support in related products

e Connect Suite from High Integrity Systems
e TCP/IP stack
e USB stack

 Host and device

* File systems
* DOS compatible FAT

Task status in FreeRTOS

Suspended

* Running
* Task is actually executing vTaskSuspend()

vTaskSuspend() called

called

* Ready
* Task is ready to execute but a task
of equal or higher priority is
Running.

viaskResume()
called

vTaskSuspend|()
callee Event Blocking API

function called

Blocked

2019/08/27 ET222:

Task status in FreeRTOS

Suspended

e Blocked

e Task is waiting for some event.

* Time: if a task calls vTaskDelay() it will
block until the delay period has
expired.

* Resource: Tasks can also block waiting
for queue and semaphore events.

* Suspended
* Much like blocked, but not waiting for

vTaskSuspend()
called

vTaskSuspend()
called

vTaskResume()
called

anything.

e Tasks will only enter or exit the
suspended state when explicitly vTaskSuspend()
commanded to do so through the called Event

Blocking AFI
function called

vTaskSuspend() and xTaskResume()
API calls respectively.

Blocked

2019/08/27 ET222:

RTOS for Arduino

Real Time Operating Systems (RTOS) for ATmega

2019/08/27 ET2223

50

Arduino and the Bootloader

* Arduino, the ATmega variant, lacks an OS

* Rather, a simple program:
* Waits for a new incoming sketch over serial.
* |f a new sketch is uploaded, the bootloader loads it into flash memory.

* If no new sketch is received, jumps to memory beyond the bootloader (i.e.
the current sketch) and executes it.

The Big Loop

* Once execution moves past the bootloader, the master loop is
entered.

* There is a single “thread” of execution.

* Functions that need to be executed in the background can be
implemented via ISRs.

* May be entirely appropriate for certain applications!
* Ask yourself,

* Does the app in question need multiple threads of execution?
* Dol really need a RTOS?

RTOS — Advantages

* Built-in support for threads
* Though the processor only handles on thing at a time, rapid switching gives
the illusion of simultaneous execution

e Can result in more efficient use of processor time (assuming efficient
scheduling)

* Enables integration of numerous modules. Developers have
confidence that threads will be managed efficiently and safely.

RTOS — Advantages

* Threading syntactically more accessible to developers, who may be
intimidated / put off by interrupts.

* Formal prioritization of threading (if present) can ensure high priority
threads don’t wait on those that are less important

RTOS — Disadvantages

* Memory Footprint

* The RTOS and application code for managing threads will, undoubtedly
consume extra memory

* Processor Overhead
* Incurred during thread management, etc.

* Priority Inversion

* If the RTOS doesn’t have built-in prioritization and a mechanism for enforcing
it, a higher-priority thread can find itself waiting for one of lower priority

RTOS — Disadvantages

* Deadlock

* In any multi-threaded system, the danger of deadlocks arising from resource
contention is an issue

* Complexity
* Coding and debugging can be more difficult when threads are involved

* Learning curve

* In addition the programming language, OS-specific calls and syntax must be
learned

Other RTOS's

* LynxOS
e Microkernel Architecture

* Kernel provides scheduling/interrupt handling

* Additional features through Kernel Plug Ins(KPIs)
e TCP/IP stack, Filesystem
* KPI's are multithreaded

 Memory Protection/ Demand Paging Optional

* Development and Deployment on the same host
* OS support for compilers/debuggers

Other RTOS's (contd)

e \/xWorks

* Monolithic Architecture
* Real Time Posix compliant
* Cross development System

* pSOS
* Object Oriented OS

Embedded RTOS Examples

* FreeRTOS
e http://www.freertos.org/a00098.html

* Boasts support for numerous devices
e Support for ATMega seems limited

* Threading
e Unlimited # of tasks
* Unlimited # of priorities and flexible assignment

* Femto OS
* http://www.femtoos.org/
* Small footprint
* Wide Atmel support

2019/08/27 ET2223

59

http://www.freertos.org/a00098.html
http://www.femtoos.org/

Embedded RTOS Examples

* Nut/OS
* http://www.ethernut.de/en/software/index.html|
e Support for numerous ATMega versions

* Two relevant implementations

e EtherNut for wired networking
e BTNut for wireless communication via Bluetooth

* DuinOS
 https://github.com/DuinOS/DuinQOS
e RTOS for Arduino
* “Native” to Arduino and meant for use in Arduino programming environment

* Good Code Example using “task loops”

2019/08/27 ET2223 60

http://www.ethernut.de/en/software/index.html
https://github.com/DuinOS/DuinOS

