
Interfacing Techniques
ET2223 Microprocessors, Microcontrollers, and Embedded Systems

Partially based on
Embedded Systems Design: A Unified Hardware/Software Introduction, Vahid/Givargis (2000)

2019/06/27 ET2223 1

Outline

• Interfacing basics

• Microprocessor interfacing
• I/O Addressing

• Interrupts

• Direct memory access

• Arbitration

• Hierarchical buses

2019/06/27 ET2223 2

Interfacing basics

2019/06/27 ET2223 3

Introduction

• Transfer of data among processors and memories is known as
interfacing.

• Processor ⟶ Process data

• Memory ⟶ Storage

• Buses ⟶ Communication

2019/06/27 ET2223 4

A simple bus

• Wires:
• Uni-directional or bi-directional

• One line may represent multiple wires

• Bus
• Set of wires with a single function

• Address bus, data bus

• Or, entire collection of wires
• Address, data and control

• Associated protocol: rules for communication

2019/06/27 ET2223

bus structure

Processor Memory

rd'/wr

enable

addr[0-11]

data[0-7]

bus

5

Ports

• Conducting device on periphery

• Connects bus to processor or memory

• Often referred to as a pin
• Actual pins on periphery of IC package that plug

into socket on printed-circuit board

• Sometimes metallic balls instead of pins

• Today, metal “pads” connecting processors and
memories within single IC

• Single wire or set of wires with single function
• e.g., 12-wire address port

2019/06/27 ET2223

bus

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

port

6

Timing diagrams

• Most common method for describing a communication protocol

• Time proceeds to the right on x-axis

• Control signal: low or high
• May be active low (e.g., go’, /go, or go_L)
• Use terms assert (active) and deassert
• Asserting go’ means go=0

• Data signal: not valid or valid

• Protocol may have subprotocols
• Called bus cycle, e.g., read and write
• Each may be several clock cycles

• Read example
• rd’/wr set low,address placed on addr for at least tsetup time before

enable asserted, enable triggers memory to place data on data wires by
time tread

2019/06/27 ET2223 7

write protocol

rd'/wr

enable

addr

data

tsetup twrite

read protocol

rd'/wr

enable

addr

data

tsetup tread

Basic protocol concepts

• Actor:
• master initiates, servant (slave) respond

• Direction:
• sender, receiver

• Addresses:
• Special kind of data

• Specifies a location in memory, a
peripheral, or a register within a
peripheral

• Time multiplexing

• Share a single set of wires for multiple
pieces of data

• Saves wires at expense of time

2019/06/27 ET2223

data serializing address/data muxing

Master Servantreq

data(8)

data(15:0) data(15:0)

mux demux

Master Servantreq

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer

8

Microprocessor interfacing

2019/06/27 ET2223 9

Microprocessor interfacing: I/O addressing

• A microprocessor communicates with other devices using some of its
pins
• Port-based I/O (parallel I/O)

• Processor has one or more N-bit ports

• Processor’s software reads and writes a port just like a register

• e.g., P0 = 0xFF; v = P1.2; -- P0 and P1 are 8-bit ports

• Bus-based I/O
• Processor has address, data and control ports that form a single bus

• Communication protocol is built into the processor

• A single instruction carries out the read or write protocol on the bus

2019/06/27 ET2223 10

Compromises/extensions

• Parallel I/O peripheral
• When processor only supports bus-based I/O, but parallel

I/O needed

• Each port on peripheral connected to a register within
peripheral that is read/written by the processor

• Extended parallel I/O
• When processor supports port-based I/O but more ports

needed

• One or more processor ports interface with parallel I/O
peripheral extending total number of ports available for I/O

• e.g., extending 4 ports to 6 ports in figure

2019/06/27 ET2223

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-based I/O

processor

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0

Port 1

Port 2

Port 3

Extended parallel I/O

11

Types of bus-based I/O

• Processor talks to both memory and peripherals using same bus –
two ways to talk to peripherals
• Memory-mapped I/O

• Peripheral registers occupy addresses in same address space as memory

• e.g., Bus has 16-bit address
• lower 32K addresses may correspond to memory

• upper 32k addresses may correspond to peripherals

• Standard I/O (I/O-mapped I/O)
• Additional pin (M/IO) on bus indicates whether a memory or peripheral access

• e.g., Bus has 16-bit address
• all 64K addresses correspond to memory when M/IO set to 0

• all 64K addresses correspond to peripherals when M/IO set to 1

2019/06/27 ET2223 12

Memory-mapped I/O vs. Standard I/O

• Memory-mapped I/O
• Requires no special instructions

• Assembly instructions involving memory like MOV and ADD work with peripherals as
well

• Standard I/O requires special instructions (e.g., IN, OUT) to move data between
peripheral registers and memory

• Standard I/O
• No loss of memory addresses to peripherals

• Simpler address decoding logic in peripherals possible
• When number of peripherals much smaller than address space then high-order address

bits can be ignored

• Smaller and/or faster comparators

2019/06/27 ET2223 13

ISA bus protocol – memory access

• ISA: Industry Standard Architecture
• Common in 80x86’s

• Features
• 20-bit address

• Compromise strobe/handshake control
• 4 cycles default

• Unless CHRDY deasserted – resulting in
additional wait cycles (up to 6)

2019/06/27 ET2223

Microprocessor Memory I/O Device

ISA bus

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMR

CHRDY

C1 C2 WAIT C3

C4

DATA

memory-read bus cycle

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMW

CHRDY

C1 C2 WAIT C3

C4

DATA

ADDRESS

memory-write bus cycle

14

ISA bus

• ISA supports standard I/O
• /IOR distinct from /MEMR for

peripheral read
• /IOW used for writes

• 16-bit address space for I/O vs. 20-
bit address space for memory

• Otherwise very similar to memory
protocol

2019/06/27 ET2223

CYCLE

CLOCK

D[7-0]

A[15-0]

ALE

/IOR

CHRDY

C1 C2 WAIT C3 C4

DATA

ADDRESS

ISA I/O bus read protocol

15

A basic memory protocol

• Interfacing an 8051 to external memory
• Ports P0 and P2 support port-based I/O when 8051 internal memory being

used

• Those ports serve as data/address buses when external memory is being used

• 16-bit address and 8-bit data are time multiplexed; low 8-bits of address must
therefore be latched with aid of ALE signal

2019/06/27 ET2223

P0

P2

Q

ALE

/RD

Adr. 7..0

Adr. 15…8

Adr. 7…0

Data

8051

74373

P0

HM6264

D Q

8

P2

ALE G

A<0...15>

D<0...7>

/OE

/WE

/CS

/WR

/RD

/CS1

/PSEN

CS2

27C256

/CS

A<0...14>

D<0...7>

/OE

16

A more complex memory protocol

• Generates control signals to drive the TC55V2325FF memory chip in burst mode
• Addr0 is the starting address input to device

• GO is enable/disable input to device

2019/06/27 ET2223

Specification for a single

read operation

CLK

/ADSP

/ADSC

/ADV

addr <15…0>

/WE

/OE

/CS1 and /CS2

CS3

data<31…0>

ADSP=1,

ADSC=1

ADV=1, OE=1,

Addr = ‘Z’

ADSP=1,

ADSC=0

ADV=1, OE=1,

Addr = ‘Z’

ADSP=1,

ADSC=1

ADV=0, OE=0,

Addr = ‘Z’

GO=1

GO=0

Data is

ready

here!

GO=1

GO=1

GO=0

GO=0

S0 S1

S2 S3

ADSP=0,

ADSC=0

ADV=0, OE=1,

Addr = Addr0

GO=0

GO=1

FSM description

17

Microprocessor interfacing: interrupts

• Suppose a peripheral intermittently receives data, which must be
serviced by the processor
• The processor can poll the peripheral regularly to see if data has arrived

• This is wasteful!

• The peripheral can interrupt the processor when it has data

• Requires an extra pin or pins: Int
• If Int is 1, processor suspends current program, jumps to an Interrupt Service

Routine, or ISR

• Known as interrupt-driven I/O

• Essentially, “polling” of the interrupt pin is built-into the hardware, so no
extra time!

2019/06/27 ET2223 18

Microprocessor interfacing: interrupts

• What is the address (interrupt address vector) of the ISR?
• Fixed interrupt

• Address built into microprocessor, cannot be changed

• Either ISR stored at address or a jump to actual ISR stored if not enough bytes available

• Vectored interrupt
• Peripheral must provide the address

• Common when microprocessor has multiple peripherals connected by a system bus

• Compromise: interrupt address table

2019/06/27 ET2223 19

Interrupt-driven I/O using fixed ISR location

2019/06/27 ET2223

1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the

microprocessor.3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and sets PC to the ISR fixed location

of 16.

4(a): The ISR reads data from 0x8000,

modifies the data, and writes the resulting

data to 0x8001.

5: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

4(b): After being read, P1 de-

asserts Int.

T
im

e

20

Interrupt-driven I/O using vectored interrupt

2019/06/27 ET2223

1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request servicing

by the microprocessor.3: After completing instruction at 100, μP sees Int

asserted, saves the PC’s value of 100, and asserts

Inta.

5(a): μP jumps to the address on the bus (16).

The ISR there reads data from 0x8000, modifies

the data, and writes the resulting data to 0x8001.

6: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

5(b): After being read, P1 deasserts

Int.

T
im

e

4: P1 detects Inta and puts interrupt

address vector 16 on the data bus.

21

Interrupt address table

• Compromise between fixed and vectored interrupts
• One interrupt pin

• Table in memory holding ISR addresses (maybe 256 words)

• Peripheral doesn’t provide ISR address, but rather index into table
• Fewer bits are sent by the peripheral

• Can move ISR location without changing peripheral

2019/06/27 ET2223 22

Additional interrupt issues

• Maskable vs. non-maskable interrupts
• Maskable: programmer can set bit that causes processor to ignore interrupt

• Important when in the middle of time-critical code

• Non-maskable: a separate interrupt pin that can’t be masked
• Typically reserved for drastic situations, like power failure requiring immediate backup of

data to non-volatile memory

• Jump to ISR
• Some microprocessors treat jump same as call of any subroutine

• Complete state saved (PC, registers) – may take hundreds of cycles

• Others only save partial state, like PC only
• Thus, ISR must not modify registers, or else must save them first
• Assembly-language programmer must be aware of which registers stored

2019/06/27 ET2223 23

Direct memory access

• Buffering
• Temporarily storing data in memory before processing
• Data accumulated in peripherals commonly buffered

• Microprocessor could handle this with ISR
• Storing and restoring microprocessor state inefficient
• Regular program must wait

• DMA controller more efficient
• Separate single-purpose processor
• Microprocessor relinquishes control of system bus to DMA controller
• Microprocessor can meanwhile execute its regular program

• No inefficient storing and restoring state due to ISR call
• Regular program need not wait unless it requires the system bus

2019/06/27 ET2223 24

Peripheral to memory transfer with DMA

2019/06/27 ET2223

1(a): μP is executing its main program.

It has already configured the DMA ctrl

registers.

1(b): P1 receives input

data in a register with

address 0x8000.

2: P1 asserts req to request

servicing by DMA ctrl.

7(b): P1 de-asserts req.

T
im

e

3: DMA ctrl asserts Dreq

to request control of

system bus.

4: After executing instruction 100, μP

sees Dreq asserted, releases the system

bus, asserts Dack, and resumes

execution. μP stalls only if it needs the

system bus to continue executing.
5: (a) DMA ctrl asserts

ack (b) reads data from

0x8000 and (b) writes that

data to 0x0001.

6:. DMA de-asserts Dreq

and ack completing

handshake with P1.
7(a): μP de-asserts Dack and resumes

control of the bus.

25

Peripheral to memory transfer with DMA

2019/06/27 ET2223

1(a): P is executing its main program. It has

already configured the DMA ctrl registers

1(b): P1 receives input data in a register with

address 0x8000.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

26

Peripheral to memory transfer with DMA

2019/06/27 ET2223

2: P1 asserts req to request servicing

by DMA ctrl.

3: DMA ctrl asserts Dreq to request control of

system bus

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

reqreq

1

P1
Dreq

1

DMA ctrl P1

27

Peripheral to memory transfer with DMA

2019/06/27 ET2223

4: After executing instruction 100, P sees

Dreq asserted, releases the system bus, asserts

Dack, and resumes execution, P stalls only if

it needs the system bus to continue executing.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Dack
1

28

Peripheral to memory transfer with DMA

2019/06/27 ET2223

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Data memory

DMA ctrl P1

System bus

0x8000

0x0000 0x0001

0x0001

0x8000

ack

req

5: DMA ctrl (a) asserts ack, (b) reads data

from 0x8000, and (c) writes that data to

0x0001.

(Meanwhile, processor still executing if not

stalled!)

ack
1

29

Peripheral to memory transfer with DMA

2019/06/27 ET2223

6: DMA de-asserts Dreq and ack completing

the handshake with P1.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

ack
0Dreq

0

30

ISA bus DMA cycles

2019/06/27 ET2223

Processor Memory

I/O Device

ISA-Bus

DMA

R

A

R A

DMA Memory-Write Bus Cycle

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/IOR

/MEMW

CHRDY

C1 C2 C3 C4 C5 C6

C7

DATA

DMA Memory-Read Bus Cycle

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMR

/IOW

CHRDY

C1 C2 C3 C4 C5 C6

C7

DATA

31

Arbitration

2019/06/27 ET2223 32

Arbitration

• A conflict may arise if the number of DMA controllers or other
controllers or processors try to access the common bus at the same
time, but access can be given to only one of those.

• Consider the situation where multiple peripherals request service
from single resource simultaneously
• e.g., microprocessor, DMA controller – which gets serviced first?

• To resolve these conflicts, Bus Arbitration procedure is implemented
to coordinate the activities of all devices requesting memory
transfers.

2019/06/27 ET2223 33

Arbitration: Priority arbiter

• Priority arbiter
• Single-purpose processor
• Peripherals make requests to arbiter, arbiter makes requests to resource
• Arbiter connected to system bus for configuration only

• Types of priority
• Fixed priority

• each peripheral has unique rank
• highest rank chosen first with simultaneous requests
• preferred when clear rank differ between peripherals

• Rotating priority (round-robin)
• priority changed based on history of servicing
• better distribution of servicing especially among

peripherals with similar priority demands

2019/06/27 ET2223

Micro-

processor

Priority

arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1

Ireq2

2 2

6

34

Arbitration: Priority arbiter

1. Microprocessor is executing its program.

2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts Ireq2.

3. Priority arbiter sees at least one Ireq input asserted, so asserts Int.

4. Microprocessor stops executing its program and stores its state.

5. Microprocessor asserts Inta.

6. Priority arbiter asserts Iack1 to acknowledge Peripheral1.

7. Peripheral1 puts its interrupt address vector on the system bus

8. Microprocessor jumps to the address of ISR read
from data bus, ISR executes and returns
(and completes handshake with arbiter).

9. Microprocessor resumes executing its program.

2019/06/27 ET2223

Micro-

processor

Priority

arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1

Ireq2

2 2

6

35

Arbitration: Daisy-chain arbitration

• Arbitration done by peripherals
• Built into peripheral or external logic added

• req input and ack output added to each peripheral

• Peripherals connected to each other in daisy-chain manner
• One peripheral connected to resource, all others connected “upstream”

• Peripheral’s req flows “downstream” to resource, resource’s ack flows
“upstream” to requesting peripheral

• Closest peripheral has highest priority

2019/06/27 ET2223

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

36

Arbitration: Daisy-chain arbitration

• Pros
• Simplicity and Scalability

• Easy to add/remove peripheral - no system redesign needed

• The user can add more devices anywhere along the chain, up to a certain
maximum value.

• Cons
• One broken peripheral can cause loss of access to other peripherals

• Propagation delay is arises in this method

• Does not support rotating priority

2019/06/27 ET2223

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

37

Network-oriented arbitration

• When multiple microprocessors share a bus (sometimes called a
network)
• Arbitration typically built into bus protocol

• Separate processors may try to write simultaneously causing collisions
• Data must be resent

• Don’t want to start sending again at same time
• statistical methods can be used to reduce chances

• Typically used for connecting multiple distant chips
• Trend – use to connect multiple on-chip processors

2019/06/27 ET2223 38

Multilevel bus architectures

• Don’t want one bus for all communication
• Peripherals would need high-speed, processor-specific bus interface

• excess gates, power consumption, and cost; less portable
• Too many peripherals slows down bus

• Processor-local bus
• High speed, wide, most frequent communication
• Connects microprocessor, cache, memory controllers, etc.

• Peripheral bus
• Lower speed, narrower, less frequent communication
• Typically industry standard bus (ISA, PCI) for portability

• Bridge
• Single-purpose processor converts communication between busses

2019/06/27 ET2223

Processor-local bus

Micro-

processor

Cache Memory

controller

DMA

controller

BridgePeripheralPeripheralPeripheral

Peripheral bus

39

Advanced communication principles

• Layering
• Break complexity of communication protocol into pieces easier to design and understand
• Lower levels provide services to higher level

• Lower level might work with bits while higher level might work with packets of data

• Physical layer
• Lowest level in hierarchy

• Medium to carry data from one actor (device or node) to another

• Parallel communication
• Physical layer capable of transporting multiple bits of data

• Serial communication
• Physical layer transports one bit of data at a time

• Wireless communication
• No physical connection needed for transport at physical layer

2019/06/27 ET2223 40

