RTOS Examples

EE5182 Microcontrollers and Embedded Systems

Includes content from:
Introduction to Real Time OSes by Mark Brehob
Introduction to FreeRTOS V6.0.5 by Amr Ali Abdel-Naby
The mC/0S-1l Real-Time Operating System by NC State University

1C/0OS

Pronounced “micro C 0S”, a full-featured embedded operating system.
UC/0S-Il and uC/OS-Ill are pre-emptive, highly portable, and scalable real-time kernels.

https://www.micrium.com/rtos/

2019/05/09 EE5182

https://www.micrium.com/rtos/

Task States

* Five possible states for a tasks:

* Dormant — not yet visible to OS
(use OSTaskCreate(), etc.)

* Ready

* Running

* Waiting Waiting

* |SR — preempted by an Interrupt
Service Routine (ISR)

2019/05/09 EE5182

Dormant

Running

Task Scheduling

e Scheduler runs highest-priority task using OSSched()
* OSRdyTbl has a set bit for each ready task
* Checks to see if context switch is needed

 Macro OS_TASK SW performs context switch
* Implemented as software interrupt which points to OSCtxSw
e Save registers of task being switched out
* Restore registers of task being switched in

Task Scheduling

* Scheduler locking

e Can lock scheduler to prevent other tasks from running (ISRs can still run)
* OSSchedLock()
e OSSchedUnlock()

* Nesting of OSSchedLock possible

* Don’t lock the scheduler and then perform a system call which could put your
task into the WAITING state!

* |dle task
* Runs when nothing else is ready
* Automatically has prioirty OS_LOWEST _PRIO
* Only increments a counter for use in estimating processor idle time

Task States

e Task status OSTCBStat
/* TASK STATUS (Bit definition for OSTCBStat)

#define
#define
#define
#define
#define

OS_STAT_RDY
OS_STAT_SEM
OS_STAT_MBOX
OS_STAT_Q
OS_STAT_SUSPEND

0x00
Ox01
0x02
0x04
0x08

T332

* Ready to run
* Pending
* Pending
* Pending
* Task 1s

on semaphore *

on mailbox
on queue
suspended

]]] I I
bl bl bl bl bl

Enabling Interrupts

» Macros OS_ENTER_CRITICAL, OS_EXIT CRITICAL

* Note: three methods are provided in os_cpu.h
* #1 doesn’t restore interrupt state, just renables interrupts

* #2 saves and restores state, but stack pointer must be same at enter/exit
points — use this one!
* #3 uses a variable to hold state
* |s not reentrant
» Should be a global variable, not declared in function StartSystemTick()

System Clock Tick

OS needs periodic timer for time delays and timeouts
Recommended frequency 10-200 Hz

* trade off overhead vs. response time (and accuracy of delays)
Must enable these interrupts after calling OSStart()

OSTick() ISR
e Calls OSTimeTick()

e Calls hook to a function of your choosing
* Decrements non-zero delay fields (OSTCBDIy) for all task control blocks
» |If a delay field reaches zero, make task ready to run (unless it was suspended)

* Increments counter variable OSTime (32-bit counter)
* Then returns from interrupt

Interface
 OSTimeGet(): Ticks (OSTime value) since OSStart was called
* OSTimeSet(): Set value of this counter

Overview of Writing an Application

 Scale the OS resources to match the application
e See os_cfg.h

e Define a stack for each task
 Write tasks
 Write ISRs

* Write main() to Initialize and start up the OS (main.c)
* |Initialize MCU, display, OS
 Start timer to generate system tick
* Create semaphores, etc.

* Create tasks
e Call OSStart()

Configuration and Scaling

* For efficiency and code size, default version of OS supports limited
functionality and resources

* When developing an application, must verify these are sufficient (or
may have to track down strange bugs)
e Can’tjust blindly develop program without considering what’s available

 Edit os_cfg.h to configure the OS to meet your application’s needs
* # events, # tasks, whether mailboxes are supported, etc.

Task Creation

e OSTaskCreate() in os_task.c

e Create a task

* Arguments: pointer to task code (function), pointer to argument, pointer to
top of stack (use TOS macro), desired priority (unique)

e OSTaskCreateExt() in os_task.c

e Create a task

* Arguments: same as for OSTaskCreate(), plus
 id: user-specified unique task identifier number
e pbos: pointer to bottom of stack. Used for stack checking (if enabled).
» stk_size: number of elements in stack. Used for stack checking (if enabled).
e pext: pointer to user-supplied task-specific data area (e.g. string with task name)
e opt: options to control how task is created.

More Task Management

* OSTaskSuspend()

* Task will not run again until after it is resumed
* Sets OS_STAT SUSPEND flag, removes task from ready list if there
* Argument: Task priority (used to identify task)

* OSTaskResume()
* Task will run again once any time delay expires and task is in ready queue
* Clears OS_STAT SUSPEND flag
* Argument: Task priority (used to identify task)

* OSTaskDel()
* Sets task to DORMANT state, so no longer scheduled by OS
* Removed from OS data structures: ready list, wait lists for semaphores/mailboxes/queues, etc.

* OSTaskChangePrio()
* |dentify task by (current) priority
* Changes task’s priority

* OSTaskQuery()
* Identify task by priority
* Copies that task’s TCB into a user-supplied structure
* Useful for debugging

FreeRTOS

Market Leading, De-facto Standard and Cross Platform RTOS kernel for embedded devices.
Ported to 35 microcontroller platforms, distributed under the MIT License.

https://www.freertos.org/

2019/05/09 EE5182

13

https://www.freertos.org/

SO u rce COd e signed portBASE TYPE xTaskRemoveFromEventlList({ const xlist * const pxEventlist)

1
tskTCE *pxUnblockedTCE;

portBASE_TYPE xReturn;

. o - J* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED OR THE
o ngh quallty SCHEDULER SUSPEMDED. It can also be called from within an ISR. */

/* The event list is sorted in priority order, so we can remove the
® Neat first in the list, remowe the TCBE from the delayed list, and add
it to the ready list.

® I If an event is for a queue that is locked then this function will newver
ConSIStent get called - the lock count on the queue will get modified instead. This

means we can always expect exclusive access to the event list here.

° I |
Organlzed This function assumes that a check has already been made to ensure that

pxEventlist is not empty. */
pxUnblockedTCB = (tskTCB *) 1istGET_OWNER_OF HEAD_ENTRY(pxEventlist);

¢ Com mentEd configASSERT(pxUnblockedTCB)

vListRemove(&(pxUnblockedTCB-»xEventListItem));

if({ uxSchedulerSuspended == { unsigned portBASE _TYPE) pdFALSE)

1
vListRemove({ &(pxUnblockedTCB-:>xGenericlistItem));
prvaddTaskToReadyQueue{ pxUnblockedTCE) ;
¥
else
1
/* We cannot access the delayed or ready lists, so will hold this
task pending until the scheduler is resumed. */
vListInsertEnd({ xList *) &(xPendingReadylist), &(pxUnblockedTCB-»xEventListItem));
¥

2019/05/09 EE5182 14

Portable

* Highly portable C
e 35 architectures supported
e Assembly is kept minimum

* Ports are freely available in
source code

e Other contributions do exist

2019/05/09 Amr Ali Abdel-Naby@2010

-

Z“ freescale

semiconductor

ARM HL°

AIMEL B
—————— 7}

Introduction’to FreeRTOS V6.0.5

15

Scalable

* Only use the services you only
need.

* FreeRTOSConfig.h

* Pretty darn small for what you
get.

* ~6000 lines of code (including a lot
of comments, maybe half that
without?)

* Minimum footprint = 4 KB

2019/05/09 EE5182 16

Preemptive and Cooperative Scheduling

* Preemptive scheduling:
* Fully preemptive
* Always runs the highest priority task that is ready to run
* Comparable with other preemptive kernels
* Used in conjunction with tasks

* Cooperative scheduling:

* Context switch occurs if:
* A task/co-routine blocks
* Or a task/co-routine yields the CPU

e Used in conjunction with tasks/co-routines

Multitasking

 No software restriction on:
e # of tasks that can be created
 # of priorities that can be used

* Priority assighment
* More than one task can be assighed the same priority.
* RR with time slice = 1 RTOS tick

Advanced Features

* Execution tracing

* Run time statistics collection
* Memory management

* Memory protection support

« Stack overflow protection

Device support in related products

* Connect Suite from High Integrity Systems
e TCP/IP stack
e USB stack

 Host and device

* File systems
* DOS compatible FAT

Task status in FreeRTOS

Suspended

* Running
* Task is actually executing vTaskSuspend()

vTaskSuspend() called

called

* Ready
* Task is ready to execute but a task
of equal or higher priority is
Running.

viaskResume()
called

vTaskSuspend|()
callee Event Blocking API

function called

Blocked

2019/05/09 EE518-

Task status in FreeRTOS

Suspended

e Blocked

e Task is waiting for some event.

* Time: if a task calls vTaskDelay() it will
block until the delay period has
expired.

* Resource: Tasks can also block waiting
for queue and semaphore events.

* Suspended
* Much like blocked, but not waiting for

vTaskSuspend()
called

vTaskSuspend()
called

vTaskResume()
called

anything.

e Tasks will only enter or exit the
suspended state when explicitly vTaskSuspend()
commanded to do so through the called Event

Blocking AFI
function called

vTaskSuspend() and xTaskResume()
API calls respectively.

Blocked

2019/05/09 EE518-

RTOS for Arduino

Real Time Operating Systems (RTOS) for ATmega

2019/05/09 EE5182

23

Arduino and the Bootloader

* Arduino, the ATmega variant, lacks an OS

e Rather, a simple program:
* Waits for a new incoming sketch over serial.
* |f a new sketch is uploaded, the bootloader loads it into flash memory.

* If no new sketch is received, jumps to memory beyond the bootloader (i.e.
the current sketch) and executes it.

The Big Loop

* Once execution moves past the bootloader, the master loop is
entered.

* There is a single “thread” of execution.

* Functions that need to be executed in the background can be
implemented via ISRs.

* May be entirely appropriate for certain applications!
* Ask yourself,

* Does the app in question need multiple threads of execution?
* Dol really need a RTOS?

RTOS — Advantages

* Built-in support for threads
* Though the processor only handles on thing at a time, rapid switching gives
the illusion of simultaneous execution

e Can result in more efficient use of processor time (assuming efficient
scheduling)

* Enables integration of numerous modules. Developers have
confidence that threads will be managed efficiently and safely.

RTOS — Advantages

* Threading syntactically more accessible to developers, who may be
intimidated / put off by interrupts.

* Formal prioritization of threading (if present) can ensure high priority
threads don’t wait on those that are less important

RTOS — Disadvantages

* Memory Footprint

* The RTOS and application code for managing threads will, undoubtedly
consume extra memory

* Processor Overhead
* Incurred during thread management, etc.

* Priority Inversion

* If the RTOS doesn’t have built-in prioritization and a mechanism for enforcing
it, a higher-priority thread can find itself waiting for one of lower priority

RTOS — Disadvantages

* Deadlock

* In any multi-threaded system, the danger of deadlocks arising from resource
contention is an issue

* Complexity
* Coding and debugging can be more difficult when threads are involved

* Learning curve

* In addition the programming language, OS-specific calls and syntax must be
learned

Embedded RTOS Examples

* FreeRTOS
* http://www.freertos.org/a00098.html

* Boasts support for numerous devices
e Support for ATMega seems limited

* Threading
e Unlimited # of tasks
* Unlimited # of priorities and flexible assignment

* Femto OS
* http://www.femtoos.org/
* Small footprint
* Wide Atmel support

2019/05/09 EE5182

30

http://www.freertos.org/a00098.html
http://www.femtoos.org/

Embedded RTOS Examples

* Nut/OS
* http://www.ethernut.de/en/software/index.html|
e Support for numerous ATMega versions

* Two relevant implementations

e EtherNut for wired networking
e BTNut for wireless communication via Bluetooth

* DuinOS
 https://github.com/DuinOS/DuinQOS
e RTOS for Arduino
* “Native” to Arduino and meant for use in Arduino programming environment

* Good Code Example using “task loops”

2019/05/09 EE5182 31

http://www.ethernut.de/en/software/index.html
https://github.com/DuinOS/DuinOS

