
RTOS Examples
EE5182 Microcontrollers and Embedded Systems

2019/05/09 EE5182 1

Includes content from:
Introduction to Real Time OSes by Mark Brehob

Introduction to FreeRTOS V6.0.5 by Amr Ali Abdel-Naby
The mC/OS-II Real-Time Operating System by NC State University

µC/OS
Pronounced “micro C OS”, a full-featured embedded operating system.

µC/OS-II and µC/OS-III are pre-emptive, highly portable, and scalable real-time kernels.

https://www.micrium.com/rtos/

2019/05/09 EE5182 2

https://www.micrium.com/rtos/

Task States

• Five possible states for a tasks:
• Dormant – not yet visible to OS

(use OSTaskCreate(), etc.)

• Ready

• Running

• Waiting

• ISR – preempted by an Interrupt
Service Routine (ISR)

Ready

Running

Waiting

Dormant

ISR2019/05/09 EE5182 3

Task Scheduling

• Scheduler runs highest-priority task using OSSched()
• OSRdyTbl has a set bit for each ready task

• Checks to see if context switch is needed

• Macro OS_TASK_SW performs context switch
• Implemented as software interrupt which points to OSCtxSw

• Save registers of task being switched out

• Restore registers of task being switched in

2019/05/09 EE5182 4

Task Scheduling

• Scheduler locking
• Can lock scheduler to prevent other tasks from running (ISRs can still run)

• OSSchedLock()

• OSSchedUnlock()

• Nesting of OSSchedLock possible

• Don’t lock the scheduler and then perform a system call which could put your
task into the WAITING state!

• Idle task
• Runs when nothing else is ready

• Automatically has prioirty OS_LOWEST_PRIO

• Only increments a counter for use in estimating processor idle time

2019/05/09 EE5182 5

Task States

• Task status OSTCBStat
/* TASK STATUS (Bit definition for OSTCBStat) */

#define OS_STAT_RDY 0x00 /* Ready to run */

#define OS_STAT_SEM 0x01 /* Pending on semaphore */

#define OS_STAT_MBOX 0x02 /* Pending on mailbox */

#define OS_STAT_Q 0x04 /* Pending on queue */

#define OS_STAT_SUSPEND 0x08 /* Task is suspended */

2019/05/09 EE5182 6

Enabling Interrupts

• Macros OS_ENTER_CRITICAL, OS_EXIT_CRITICAL

• Note: three methods are provided in os_cpu.h
• #1 doesn’t restore interrupt state, just renables interrupts

• #2 saves and restores state, but stack pointer must be same at enter/exit
points – use this one!

• #3 uses a variable to hold state
• Is not reentrant

• Should be a global variable, not declared in function StartSystemTick()

2019/05/09 EE5182 7

System Clock Tick

• OS needs periodic timer for time delays and timeouts

• Recommended frequency 10-200 Hz
• trade off overhead vs. response time (and accuracy of delays)

• Must enable these interrupts after calling OSStart()

• OSTick() ISR
• Calls OSTimeTick()

• Calls hook to a function of your choosing
• Decrements non-zero delay fields (OSTCBDly) for all task control blocks
• If a delay field reaches zero, make task ready to run (unless it was suspended)

• Increments counter variable OSTime (32-bit counter)
• Then returns from interrupt

• Interface
• OSTimeGet(): Ticks (OSTime value) since OSStart was called
• OSTimeSet(): Set value of this counter

2019/05/09 EE5182 8

Overview of Writing an Application

• Scale the OS resources to match the application
• See os_cfg.h

• Define a stack for each task

• Write tasks

• Write ISRs

• Write main() to Initialize and start up the OS (main.c)
• Initialize MCU, display, OS
• Start timer to generate system tick
• Create semaphores, etc.
• Create tasks
• Call OSStart()

2019/05/09 EE5182 9

Configuration and Scaling

• For efficiency and code size, default version of OS supports limited
functionality and resources

• When developing an application, must verify these are sufficient (or
may have to track down strange bugs)
• Can’t just blindly develop program without considering what’s available

• Edit os_cfg.h to configure the OS to meet your application’s needs
• # events, # tasks, whether mailboxes are supported, etc.

2019/05/09 EE5182 10

Task Creation

• OSTaskCreate() in os_task.c
• Create a task
• Arguments: pointer to task code (function), pointer to argument, pointer to

top of stack (use TOS macro), desired priority (unique)

• OSTaskCreateExt() in os_task.c
• Create a task
• Arguments: same as for OSTaskCreate(), plus

• id: user-specified unique task identifier number
• pbos: pointer to bottom of stack. Used for stack checking (if enabled).
• stk_size: number of elements in stack. Used for stack checking (if enabled).
• pext: pointer to user-supplied task-specific data area (e.g. string with task name)
• opt: options to control how task is created.

2019/05/09 EE5182 11

More Task Management

• OSTaskSuspend()
• Task will not run again until after it is resumed
• Sets OS_STAT_SUSPEND flag, removes task from ready list if there
• Argument: Task priority (used to identify task)

• OSTaskResume()
• Task will run again once any time delay expires and task is in ready queue
• Clears OS_STAT_SUSPEND flag
• Argument: Task priority (used to identify task)

• OSTaskDel()
• Sets task to DORMANT state, so no longer scheduled by OS
• Removed from OS data structures: ready list, wait lists for semaphores/mailboxes/queues, etc.

• OSTaskChangePrio()
• Identify task by (current) priority
• Changes task’s priority

• OSTaskQuery()
• Identify task by priority
• Copies that task’s TCB into a user-supplied structure
• Useful for debugging

2019/05/09 EE5182 12

FreeRTOS
Market Leading, De-facto Standard and Cross Platform RTOS kernel for embedded devices.

Ported to 35 microcontroller platforms, distributed under the MIT License.

https://www.freertos.org/

2019/05/09 EE5182 13

https://www.freertos.org/

Source Code

• High quality

• Neat

• Consistent

• Organized

• Commented

2019/05/09 EE5182 14

Portable

• Highly portable C

• 35 architectures supported

• Assembly is kept minimum

• Ports are freely available in
source code

• Other contributions do exist

2019/05/09 EE5182 15Amr Ali Abdel-Naby@2010 Introduction to FreeRTOS V6.0.5

Scalable

• Only use the services you only
need.
• FreeRTOSConfig.h

• Pretty darn small for what you
get.
• ~6000 lines of code (including a lot

of comments, maybe half that
without?)

• Minimum footprint = 4 KB

2019/05/09 EE5182 16

Preemptive and Cooperative Scheduling

• Preemptive scheduling:
• Fully preemptive
• Always runs the highest priority task that is ready to run
• Comparable with other preemptive kernels
• Used in conjunction with tasks

• Cooperative scheduling:
• Context switch occurs if:

• A task/co-routine blocks
• Or a task/co-routine yields the CPU

• Used in conjunction with tasks/co-routines

2019/05/09 EE5182 17

Multitasking

• No software restriction on:
• # of tasks that can be created

• # of priorities that can be used

• Priority assignment
• More than one task can be assigned the same priority.

• RR with time slice = 1 RTOS tick

2019/05/09 EE5182 18

Advanced Features

• Execution tracing

• Run time statistics collection

• Memory management

• Memory protection support

• Stack overflow protection

2019/05/09 EE5182 19

Device support in related products

• Connect Suite from High Integrity Systems
• TCP/IP stack

• USB stack
• Host and device

• File systems
• DOS compatible FAT

2019/05/09 EE5182 20

Task status in FreeRTOS

• Running
• Task is actually executing

• Ready
• Task is ready to execute but a task

of equal or higher priority is
Running.

2019/05/09 EE5182 21

Task status in FreeRTOS

• Blocked
• Task is waiting for some event.

• Time: if a task calls vTaskDelay() it will
block until the delay period has
expired.

• Resource: Tasks can also block waiting
for queue and semaphore events.

• Suspended
• Much like blocked, but not waiting for

anything.
• Tasks will only enter or exit the

suspended state when explicitly
commanded to do so through the
vTaskSuspend() and xTaskResume()
API calls respectively.

2019/05/09 EE5182 22

RTOS for Arduino
Real Time Operating Systems (RTOS) for ATmega

2019/05/09 EE5182 23

Arduino and the Bootloader

• Arduino, the ATmega variant, lacks an OS

• Rather, a simple program:
• Waits for a new incoming sketch over serial.

• If a new sketch is uploaded, the bootloader loads it into flash memory.

• If no new sketch is received, jumps to memory beyond the bootloader (i.e.
the current sketch) and executes it.

2019/05/09 EE5182 24

The Big Loop

• Once execution moves past the bootloader, the master loop is
entered.

• There is a single “thread” of execution.

• Functions that need to be executed in the background can be
implemented via ISRs.

• May be entirely appropriate for certain applications!
• Ask yourself,

• Does the app in question need multiple threads of execution?

• Do I really need a RTOS?

2019/05/09 EE5182 25

RTOS – Advantages

• Built-in support for threads
• Though the processor only handles on thing at a time, rapid switching gives

the illusion of simultaneous execution

• Can result in more efficient use of processor time (assuming efficient
scheduling)

• Enables integration of numerous modules. Developers have
confidence that threads will be managed efficiently and safely.

2019/05/09 EE5182 26

RTOS – Advantages

• Threading syntactically more accessible to developers, who may be
intimidated / put off by interrupts.

• Formal prioritization of threading (if present) can ensure high priority
threads don’t wait on those that are less important

2019/05/09 EE5182 27

RTOS – Disadvantages

• Memory Footprint
• The RTOS and application code for managing threads will, undoubtedly

consume extra memory

• Processor Overhead
• Incurred during thread management, etc.

• Priority Inversion
• If the RTOS doesn’t have built-in prioritization and a mechanism for enforcing

it, a higher-priority thread can find itself waiting for one of lower priority

2019/05/09 EE5182 28

RTOS – Disadvantages

• Deadlock
• In any multi-threaded system, the danger of deadlocks arising from resource

contention is an issue

• Complexity
• Coding and debugging can be more difficult when threads are involved

• Learning curve
• In addition the programming language, OS-specific calls and syntax must be

learned

2019/05/09 EE5182 29

Embedded RTOS Examples

• FreeRTOS
• http://www.freertos.org/a00098.html
• Boasts support for numerous devices

• Support for ATMega seems limited

• Threading
• Unlimited # of tasks
• Unlimited # of priorities and flexible assignment

• Femto OS
• http://www.femtoos.org/
• Small footprint
• Wide Atmel support

2019/05/09 EE5182 30

http://www.freertos.org/a00098.html
http://www.femtoos.org/

Embedded RTOS Examples

• Nut/OS
• http://www.ethernut.de/en/software/index.html
• Support for numerous ATMega versions
• Two relevant implementations

• EtherNut for wired networking
• BTNut for wireless communication via Bluetooth

• DuinOS
• https://github.com/DuinOS/DuinOS
• RTOS for Arduino
• “Native” to Arduino and meant for use in Arduino programming environment
• Good Code Example using “task loops”

2019/05/09 EE5182 31

http://www.ethernut.de/en/software/index.html
https://github.com/DuinOS/DuinOS

