
Interfacing
EE5182 Microcontrollers and Embedded Systems

2019/03/21 EE5182 1

Introduction

• Transfer of data among processors and memories is known as
interfacing.

• Processor ⟶ Process data

• Memory ⟶ Storage

• Buses ⟶ Communication

2019/03/21 EE5182 2

Basic Terminology

unidirectional (rd’/wr , enable)

• Wires

bidirectional (data)

• A set of wires with the same function :

a set of wires with a single function (data bus).

• Bus

entire wires collection along with their communication protocol.

• Protocol: rules for communicating over the wires. (low level HW protocols)

2019/03/21 EE5182 3

bus structure

Processor Memory

rd'/wr

enable

addr[0-11]

data[0-7]

bus

Basic Terminology

• Port: the actual conducting device (metal) on the processor (or
memory) through which the signal is input to, or output from.

• Pin: a port on a processor
• Pin is also a term referring to the extending pins from the processor (as own

IC package). They are designed to be plugged into a socket on a printed-circuit
board.

• If the processor coexists on a single IC with other processors and
memories, pads of metal are used in the IC.

2019/03/21 EE5182 4

Basic protocol concepts

• Actor: is the processor or memory involved in data transfer.

• A protocol involves two actors: a master, and a servant (slave).

• A master initiates the data transfer (usually general-purpose
processor), and the servant responds to the initiation request (usually
memories and peripherals).

• Data direction: the direction that the transferred data moves btw.
actors(receiving or sending data).

• Addresses: a special type of data used to indicate where regular data
should go to or come from (used to address memory locations ,
peripherals and peripheral's registers).

2019/03/21 EE5182 5

Time multiplexing

• Share a single set of wires for multiple pieces of data.

• Saves wires at expense of time.

2019/03/21 EE5182 6

data serializing address/data muxing

Master Servantreq

data(8)

data(15:0) data(15:0)

mux demux

Master Servantreq

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer

Microprocessor interfacing: I/O addressing

• The microprocessor's pins used to communicate data to and from it, are
called I/O pins.

• We normally consider the access to peripherals (not memory), as I/O.
• Two common methods for using pins to support I/O : Port-based I/O

(Parallel I/O), and Bus-based I/O.
• In parallel I/O , a port can be directly read and written by processor

instructions, like any register.
• Ex.P0=255, g=P2 .
• Ports are often bit-addressable.

• In bus-based I/O, the microprocessor has a set of address, data, and control
ports corresponding to bus lines, and uses the bus to access memory and
peripherals.

2019/03/21 EE5182 7

Memory-Mapped I/O and Standard I/O

• They are two bus-based methods for microprocessor to communicate
with peripherals.

• In memory-mapped I/O, peripherals occupy specific addresses in the
existing address space.

• e.g., Bus has 16-bit address, lower 32K addresses may correspond to memory, and upper
32k addresses may correspond to peripherals.

• In standard I/O (I/O-mapped I/O), the bus includes an additional pin
(M`/IO), to include whether the access is to memory or peripheral.

• e.g., Bus has 16-bit address, all of them for memory addressing if M`/IO=0, and all of
them for I/O addressing if M`/IO=1.

2019/03/21 EE5182 8

Memory-Mapped I/O and Standard I/O

• Memory-mapped I/O
• Requires no special instructions

• Assembly instructions involving memory like MOV and ADD work with peripherals as
well.

• Standard I/O requires special instructions (e.g., IN, OUT) to move data between
peripheral registers and memory.

• Standard I/O
• No loss of memory addresses to peripherals.

• Simpler address decoding logic in peripherals possible.
• When number of peripherals much smaller than address space then high-order address

bits can be ignored
• smaller and/or faster comparators.

2019/03/21 EE5182 9

ISA bus protocol

• ISA bus protocol supports standard I/O.

• The I/O address space is 16 bits, where it is 20 bits for memory.

• It uses compromise strobe/handshake control method.

• similar to memory protocol except address space.

2019/03/21 EE5182 10

CYCLE

CLOCK

D[7-0]

A[15-0]

ALE

/IOR

CHRDY

C1 C2 WAIT C3 C4

DATA

ADDRESS

ISA I/O bus read protocol

A basic memory protocol

• Interfacing an 8051 to external memory
• Ports P0 and P2 support port-based I/O when 8051 internal memory being

used.

• Those ports serve as data/address buses when external memory is being
used.

• 16-bit address and 8-bit data are time multiplexed; low 8-bits of address must
therefore be latched with aid of ALE signal.

2019/03/21 EE5182 11

8051

74373

P0

HM6264

D Q

8

P2

ALE G

A<0...15>

D<0...7>

/OE

/WE

/CS

/WR

/RD

/CS1

/PSEN

CS2

27C256

/CS

A<0...14>

D<0...7>

/OE

P0

P2

Q

ALE

/RD

Adr. 7..0

Adr. 15…8

Adr. 7…0

Data

Interrupts (interrupt driven I/O)

• Servicing:
• read & process data from peripheral whenever it has new data.
• Unpredictable

• Polling:
• MP repeatedly check for data
• Simple to implement
• Waste many clock cycles

• External interrupts
• Repeatedly MP checks Int pin after executing instruction, if asserted => jump to ISR
• Maskable vs Non-maskable Interrupt
• Internal Interrupt (divide by 0,…)
• Software Interrupt .

2019/03/21 EE5182 12

DMA

• Buffering:
• temporary storage of data that is awaiting processing.

• Using Interrupt:
• Storing & restoring MP states => consuming many clock cycles (inefficient)

• No execution during data moving.

• I/O of DMA:
• separate single-purpose processor (DMA controller).

• Purpose: transfer data between memories and peripherals

2019/03/21 EE5182 13

DMA flow of actions

1. MP is executing its main program. It has already
configured the DMA ctrl registers.

2. Peripheral_1 receives input data in a register, and asserts
req to request servicing by DMA ctrl.

3. DMA ctrl asserts Dreq to request control of system bus.

4. After executing instruction, MP sees Dreq asserted,
releases the system bus, asserts Dack, and resumes
execution. MP stalls only if it needs the system bus to
continue executing.

5. DMA ctrl asserts ack reads data and (b) writes that data to
memory.

6. DMA de-asserts Dreq and ack completing handshake with
Peripheral_1.

7. MP de-asserts Dack and resumes control of the bus.

8. Peripheral_1 de-asserts req.

2019/03/21 EE5182 14

DMA ctrl P1

0x8000101

:

instruction

instruction

...

...

Program

memory

PC

100

Dreq

Dack

0x000

0

0x0001

100:

needed!

0x0001

0x8000

ack

req

Arbitration

• Multiple peripherals request service simultaneously from single MP
or single DMA

• Arbitration: decide which one get services.
• Priority Arbiter.

• Daisy-Chain Arbitration.

• Network-Oriented Arbitration Methods.

2019/03/21 EE5182 15

Priority Arbiter

• Is a single-purpose processor

• 2 schemes to determine priority among peripherals:
• Fixed priority: unique rank for each peripheral. Arbiter choose the higher rank.

• Rotating priority (round-robin): based on history of servicing (e.g. least recently serviced)
• More equitable of servicing.

2019/03/21 EE5182 16

MP

Priority

arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1
Ireq2

2
2

6Vectored Interrupt

Daisy-Chain Arbitration

• Peripherals connected as a chain
• Each peripheral has: req. output, ack. input, req. input, and ack. Output

• Add or remove peripherals without redesigning the system

• Peripherals at the end of chain could become intolerably slow.

• Isn’t supporting more advanced priority schemes

• If one peripheral stop, the other lose access

• Each peripheral must be daisy-chain aware
• Otherwise, external logic is used.

2019/03/21 EE5182 17

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in 0

Network-Oriented Arbitration

• Multiple MP connected by a shared bus (network).

• Arbitration among processors.
• Typically built right into the bus protocol

• The protocol must ensure that no contending processors sending at
the same time
• Examples: I2C, Ethernet, CAN …

2019/03/21 EE5182 18

I

Multilevel Bus Architectures

• Numerous type of communications:
• Most frequent and high speed (between MPs).
• Less frequent and low speed (between MP and Peripherals like UART)

• Single high speed bus:
• Required each peripheral to have high-speed bus interface

• Extra gates ,Power consumption and cost.

• May not be very portable.
• May result in slower bus.

• 2 level buses:
• Processor local bus: connects MP, cache, memory controllers …
• Peripheral bus: ISA, PCI …

• emphasize portability, low power or low gate count.

• Bridge (single-purpose processor) connect two bus levels

2019/03/21 EE5182 19

Multilevel Bus Architectures cont.

• 2 level buses: VSI Alliance.
• Processor local bus

• System bus

• Peripheral bus

2019/03/21 EE5182 20

Processor-local bus

Micro-

processor

Cache Memory

controller

DMA

controller

BridgePeripheralPeripheralPeripheral

Peripheral bus

