
Introduction to
ARM core architecture

EE5182 Microcontrollers and Embedded Systems

2019/02/11 EE5182 1

Why ARM?

• Leading provider of 32-bit embedded RISC microprocessors
• 75% of market

• Common architecture

• High performance

• Low power consumption

• Low system cost

• Solutions for
• Embedded real-time systems for mass storage, automotive, industrial and

networking applications
• Secure applications – smartcards and SIMs

• Open platforms running complex operating systems

2019/02/11 EE5182 2

History of ARM

• ARM (Acorn RISC Machine) started as a new, powerful, CPU design for
the replacement of the 8-bit 6502 at Acorn Computers (Cambridge,
UK) in 1985

• First models had only a 26-bit program counter, limiting the memory
space to 64 MB (not too much by today standards, but a lot at that
time).

• 1990 spin-off: ARM renamed Advanced RISC Machines

2019/02/11 EE5182 3

History of ARM

• ARM now focuses on Embedded CPU cores
• IP licensing: Almost every silicon manufacturer sells some microcontroller

with an ARM core. Some even compete with their own designs.

• Processing power with low current consumption
• Ideal for portable devices

• New cores with added features
• Harvard architecture (ARM9, ARM11, Cortex)

• Floating point arithmetic

• Vector computing (VFP, NEON)

• Java language (Jazelle)

2019/02/11 EE5182 4

ARM processors vs. ARM architectures

• ARM architecture
• Describes the details of instruction set, programmer’s model, exception

model, and memory map

• Documented in the Architecture Reference Manual

• ARM processor
• Developed using one of the ARM architectures

• More implementation details, such as timing information

• Documented in processor’s Technical Reference Manual

2019/02/11 EE5182 5

What is RISC?

• Reduced instructions – fixed length

• Use of pipelines to breakdown and speed up processing

• Large number of registers – used as very fast onboard RAM

• Load-store architecture – must load and store from memory to
register via special instructions

• Overall faster, simpler processer

2019/02/11 EE5182 6

ARM architecture features

• The typical RISC features:
• A large uniform register file

• A load/store architecture, where data-processing operations operate only on
register contents, not directly on memory contents

• Simple addressing modes, with all load/store addresses being determined
from register contents and instruction fields only

• Uniform and fixed-length instructions fields, to simplify instruction decode

2019/02/11 EE5182 7

ARM architecture features

• Additionally, ARM instruction gives:
• Control over both the ALU and shifter in every data processing instruction to

maximize the use of an ALU and a shifter

• Auto-increment and auto-decrement addressing modes to optimize program
loops

• Load and Store multiple instructions to maximize data throughput

• Conditional execution of all instructions to maximize execution throughput.

• These enhancements to a basic RISC architecture allow ARM
processor to achieve a good balance of high performance, low code
size, low power consumption and low silicon area

2019/02/11 EE5182 8

ARM processor lines

• ARM architectures and
processor families can be
profiled into four groups.

2019/02/11 EE5182 9

ARM processor lines

• The Cortex-M profile
• Processors of the M profile are optimized for cost sensitive and microcontroller

applications, like automotive body electronics, smart sensors.

• The Cortex-A profile
• It aims at high-end applications running open and complex OSs, like smartphones,

tablets, netbooks, eBook readers.

• The Cortex-R profile
• It marks processors for real time applications, like mass storage or printer controllers.

• The SecureCore profile
• The ARM SecurCore™ processor family provides processors with security features for

applications like smartcards, pay TV, eGovernement.

2019/02/11 EE5182 10

ARM Cortex-M series

• Cortex-M series: Cortex-M0, M0+, M3, M4, M7, M22, M23
• Low cost, low power, bit and byte operations, fast interrupt response

• Energy-efficiency
• Lower energy cost, longer battery life

• Smaller code (Thumb mode instructions)
• Lower silicon costs

• Ease of use
• Faster software development and reuse

• Embedded applications
• Smart metering, human interface devices, automotive and industrial control systems,

white goods, consumer products and medical instrumentation

2019/02/11 EE5182 11

ARM Cortex-M series

• M0: Optimized for size and power (13 µW/MHz dynamic power)

• M0+: Lower power (11 µW/MHz dynamic power), shorter pipeline

• M3: Full Thumb and Thumb-2 instruction sets, single-cycle multiply
instruction, hardware divide, saturated math, (32 µW/MHz)

• M4: Adds DSP instructions, optional floating point unit

• M7: designed for embedded applications requiring high performance

• M23, M33: include ARM TrustZone® technology for solutions that
require optimized, efficient security

2019/02/11 EE5182 12

ARM Cortex-M series

ARM Core
Cortex
M0

Cortex
M0+

Cortex
M1

Cortex
M3

Cortex
M4

Cortex
M7

Cortex
M23

Cortex
M33

Cortex
M35P

ARM architecture ARMv6-M ARMv6-M ARMv6-M ARMv7-M ARMv7E-M ARMv7E-M
ARMv8-M
Baseline

ARMv8-M
Mainline

ARMv8-M
Mainline

Computer architecture
Von

Neuman
Von

Neumann
Von

Neumann
Harvard Harvard Harvard

Von
Neumann

Harvard Harvard

Instruction pipeline 3 stages 2 stages 3 stages 3 stages 3 stages 6 stages 2 stages 3 stages 3 stages

Thumb-1 instructions Most Most Most Entire Entire Entire Most Entire Entire

Thumb-2 instructions Some Some Some Entire Entire Entire Some Entire Entire

Multiply instructions
32x32 = 32-bit result

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Multiply instructions
32x32 = 64-bit result

No No No Yes Yes Yes No Yes Yes

Divide instructions
32/32 = 32-bit quotient

No No No Yes Yes Yes Yes Yes Yes

2019/02/11 EE5182 13

ARM Cortex-M4 internals

2019/02/11 EE5182 14

ARM processor modes

• The ARM has seven basic operating modes:
• User: unprivileged mode under which most tasks run

• FIQ: entered when a high priority (fast) interrupt is raised

• IRQ: entered when a low priority (normal) interrupt is raised

• Supervisor: entered on reset and when a Software Interrupt instruction is
executed

• Abort: used to handle memory access violations

• Undef: used to handle undefined instructions

• System: privileged mode using the same registers as user mode

2019/02/11 EE5182 15

ARM register set

• ARM processors provide
general-purpose and
special-purpose
registers.

• Some additional
registers are available in
privileged execution
modes.

2019/02/11 EE5182 16

Current Program Status Register (CPSR)

• CPSR is a 32-bit wide register used in the ARM architecture to record
various pieces of information regarding the state of the program being
executed by the processor and the state of the processor.

• This information is recorded by setting or clearing specific bits in the
register.

• The top four bits (bits 31, 30, 29, and 28) are the condition code (cc) bits
and are of most interest to us. Condition code bits are sometimes referred
to as "flags".

• The lowest 8 bits (bit 7 through to bit 0) store information about the
processor's own state.

• The remaining bits (i.e. bit 27 to bit 8) are currently unused in most ARM
processors.

2019/02/11 EE5182 17

Current Program Status Register (CPSR)

• N - the result was negative

• Z - the result was zero

• C - the result produced a carry out

• V - the result generated an arithmetic overflow

• I, F – interrupt enable bits

• T – instruction set (Thumb/ARM)

• In user programs only the top 4 bits of the CPSR
are relevant

2019/02/11 EE5182 18

ARM instruction set architecture (Version 1)

• This version was implemented by ARM 1 and was never used in a
commercial product.

• It had only 26-bit address space and is now obsolete.

• It contained:
• The basic data processing instructions (not including multiplies)

• Byte, word, and multi-word LOAD / STORE instructions

• Branch instructions, including a branch-and-link instruction designed for
subroutine calls

• A software interrupt instruction, for use in making Operating System calls

2019/02/11 EE5182 19

ARM instruction set architecture (Version 2)

• This version extended the Version 1 architecture by adding:
• Multiply and multiply-accumulate instructions

• Coprocessor support

• Two more banked registers in fast interrupt mode

• Atomic load-and-store instructions called SWP and SWPB (in a slightly variant
version called version 2a)

• Version 2 and 2a still only had a 26-bit address space and are now
obsolete

2019/02/11 EE5182 20

ARM instruction set architecture (Version 3)

• Extended the addressing range to 32-bits
• Program Status information which was stored in R15 previously is now been stored in

the Current Program status Register (CPSR) and Saved Program Status Registers
(SPSRs) to preserve the CPSR contents when an exception occurs.

• The following changes occurred to the instruction set:
• two instructions (MRS and MSR) were added to allow the new CPSR and SPSRs to be

accessed
• the functionality of instructions previously used to return from exceptions was

modified to allow them to continue to be used for that purpose

• Two new processor modes were added to use Data Abort, Prefetch Abort
and undefined Instructions exceptions effectively in Operating System
codes

2019/02/11 EE5182 21

ARM instruction set architecture (Version 4)

• This version added the following to the architecture Version 3:
• Halfword load/store instructions

• Instructions to load and sign-extend bytes and halfwords

• In T variants , an instruction to transfer to Thumb state

• A new privileged processor mode that uses the User mode registers.

• Version 4 also made it clearer which instructions should cause the
undefined Instruction exception to be taken.

2019/02/11 EE5182 22

ARM instruction set architecture (Version 5)

• This version added some new instructions and modified the
definitions of some of the instructions of Version 4 to:
• Improve the efficiency of ARM/Thumb ineterworking in T variants
• Allow the same code generation techniques to be used for non-T variants as

for T variants

• Version 5 also:
• Adds a count leading zeros instruction, which (among other things) allows

more efficient integer divide and interrupt prioritization routine
• Adds a software breakpoint instruction
• Adds more instruction options for coprocessors designers
• Tightens the definitions of how flags are set by multiply instructions

2019/02/11 EE5182 23

ARM instruction set architecture (Version 6)

• Key ARMv6 Improvements:
• Memory Management

• Multiprocessing

• Multimedia Support

• Data Handling

• Exceptions and Interrupts

2019/02/11 EE5182 24

The Thumb Instruction Set (T Variants)

• Thumb Instruction Set are:
• Introduced with architecture version 4
• Re-encoded subset of ARM instruction set
• Half the size of ARM instructions (16-bits compared with 32), hence greater

code density

• Limitations:
• Thumb code usually uses more instructions for the same job, so ARM code is

usually best for maximizing the performance of time-critical code
• The Thumb instruction set does not include some instructions that are

needed for exception handling, so ARM code needs to be used for at least
top-level exception handlers (Due to this reason Thumb Instruction is used in
conjunction with a suitable ARM instruction set)

2019/02/11 EE5182 25

Classification of ARM Instruction set

• Branch instructions

• Data processing instructions

• Status register transfer instructions

• Load and store instructions

• Coprocessor instructions

• Exceptions-generating instructions

2019/02/11 EE5182 26

Advanced Microcontroller Bus Architecture
(AMBA)
• AMBA (Advanced Microcontroller Bus Architecture) protocols are an

open standard, on-chip interconnect specification for the connection
and management of functional blocks in a System-on-Chip (SoC).

• It facilitates right-first-time development of multi-processor designs
with large numbers of controllers and peripherals.

2019/02/11 EE5182 27

ARM vs. x86

• ARM processors require significantly fewer transistors than typical PC
processors because of the fact that it has a RISC-based design.

• Fewer transistors minimizes power use, heat and production cost. All
qualities that are preferred for battery-powered devices such as
laptops, tablets, and smartphones.

• On the other hand x86 processors usually consumes a lot of energy
but the are also a lot faster.

• This makes x86 based processors ideal for desktops, gaming and
super computer that require speed more than energy efficiency.

2019/02/11 EE5182 28

ARM vs. x86

• The main difference between ARM and x86 architecture is that ARM
is RISC based while x86 is CISC based.

• CISC design is to execute multiple complex (larger) instructions.

• While the RISC design is perfect for small, simple instructions.

• The ARM has a lot more registers than x86.

• The ARM has a thumb mode to increase code density so programs fit
in less memory.

• All these features help ARM save power almost everywhere it can.

2019/02/11 EE5182 29

Resources

• The ARM University Program, ARM Architecture Fundamentals
• https://www.youtube.com/watch?list=PLqsfB23JsD0FUtaDmaMskIW1wRtFLj

mTu&v=7LqPJGnBPMM

• ARM lectures by Dr. Santanu Chaudhury, EE Department, IIT Delhi
• http://www.youtube.com/watch?v=4VRtujwa_b8&playnext=1&list=PL95AFA4

ABA8B28627&feature=results_main

• The ARM Instruction Set Architecture
• http://users.ece.utexas.edu/~valvano/EE345M/Arm_EE382N_4.pdf

2019/02/11 EE5182 30

https://www.youtube.com/watch?list=PLqsfB23JsD0FUtaDmaMskIW1wRtFLjmTu&v=7LqPJGnBPMM
http://www.youtube.com/watch?v=4VRtujwa_b8&playnext=1&list=PL95AFA4ABA8B28627&feature=results_main
http://users.ece.utexas.edu/~valvano/EE345M/Arm_EE382N_4.pdf

