System-on-a-Chip (SoC) &
ARM Architecture

EE2222 Computer Interfacing and Microprocessors

Partially based on
System-on-Chip Design by Hao Zheng

Overview

* A system-on-a-chip (SoC):
* a computing system on a single silicon substrate that integrates both
hardware and software.

* Hardware packages all necessary electronics for a particular
application.
* which implemented by SW running on HW.

* Aim for low power and low cost.
* Also more reliable than multi-component systems.

Driven by semiconductor advances

Transistors

2020

1e+10

1e+08

1e+06

10000

100

Transistors per die ——

1960 1970 1980 1990 2000 2010
Year

Cost

EE2222

0.1 |
0.01 |
0.001 |
16-04 |
10-05 |
16-06 |

1e-07 L

Cost per transistor —+— |

N

1970

1980

1990 2000 2010

Year

Basic SoC Model

Media Core Vector
e EEE—
Processor Processor Co-Processor
Interconnects
Analog & System
Memory Custom Components
circuitry P

JTAG ARM Voltage

PIO

v

PIO

t 4+ 4 4
vV vV VvV VvV Vv
v ¥ ¥ 39

— A EE— <
Scan Processor Regulator
System Controller -
Advanced Int. Ctrl. m m D — S > EBI <
Power Mgt. Ctrl. o) m %
=
PLL <: < =
Osc o [P SRAM
RC Osc @)
Reset Cirl. Peripheral %‘
Brownout Detect Bridge E
Power On Reset % > Flash
Prog. Int. Timer —p
Watchdog Timer i t
" Regl ?meUTiTner Peripheral Flash
cbug Uit an Data Controller| |Programmer
PID Ctrl. a®
< Application.—Speciﬁc
¢ I Logic
Ethernet MAC < >« g CAN Sag
USARTO-1 < >« > USB Device Sag
SPI < >« > PWM Citrl g
Two Wire Interface [« >« »| Synchro Serial Ctrl |4
ADCO0-7 < ' »| Timer/Counter 0-2 |4

I S S
vV vV VvV VvV ¥V

SoC vs Processors

System on a chip

Processors on a chip

processor multiple, simple, heterogeneous few, complex, homogeneous
cache one level, small 2-3 levels, extensive
memory embedded, on chip very large, off chip

functionality

special purpose

general purpose

interconnect wide, high bandwidth often through cache
power, cost both low both high
operation largely stand-alone need other chips

Embedded Systems

* 98% processors sold annually are used in embedded applications.

DVD Players

Industrial Robofts GPS Receivers Digital Cameras

-k, EMbedded Systems B,:,

Wireless Routers MP3 Players
=
 S—_

Set top Boxes Gaming Consoles Photocopiers Microwave Ovens

2020 EE2222

Embedded Systems: Desigh Challenges

* Power/energy efficient:
* mobile & battery powered

* Highly reliable:

e Extreme environment (e.g. temperature)

* Real-time operations:
 predictable performance

* Highly complex

* A modern automobile with 55 electronic control units
* Tightly coupled Software & Hardware
* Rapid development at low price

Desigh Complexity Challenges

Hardware design gap

+ Software design gap

= System design gap

log

2020

A

Gap

HW Design

System
Design Gap

Additional SW
required for HW
2x/10 months

Capability of
Technology
2x/18 months

HW Design
Productivity
1.6x/18 months

Average HW +
SW Productivity

Software
Productivity
2x/5 years

1981

1985

1989

1993

1997

2001

2005

EE2222

2009

>

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

Answer to design
complexity challenges:
Move to higher levels of

abstraction

Levels of Abstraction

* Circuit:
* network of transistors
* Logic:
* network of basic logic gates
* AND/OR/NOT, latches/FFs, etc.

* Processor:
* network of logic components

* i.e. ALU, MUX, decoders, registers, etc.

* System:
* network of processors, memories, buses, and other custom processing logic

SoC DeSign Flow: System Specificationw— CXPlOration/

A Simplified View

2020

* Estimation

HW/SW Partitioning_f

HW Model SW Program

N/

Synthesis HW/SW Compilation

N /

System Integration———>

Co-Verification
\ N/
e

HW Implementation Binary Image

Mem

EE2222

11

System Synthesis

* Processes -> CPUs or custom logic
 HW/SW partitioning

e Communication -> Buses or NoC

* Flow
* Profiling & Estimation
 Component & connection allocation
* Process and channel binding

Process scheduling

IF component insertion

Model refinement

High-Level Synthesis opeaonsnang

Variable binding Bus Binding
Cycle-accurate scheduling Controller Synthesis

Component + connection selection

Model Refinement

O BB2 O BB3 %

O O

2 2 | o=

‘ ‘ Memory

l N /lF\ Y #I
Processor model Processor structure

FIGURE [°6°“Processor synthesis

Hardware/Software Co-Design

e Definition:
« HW/SW co-design is the design of cooperating HW components and SW
components in a single design effort.

e Alternative definition:

« HW/SW co-design means meeting system level objectives by exploiting the
synergy of HW and SW through concurrent design.

Platform Methodology

* Reuse of previous defined platforms
* With well-defined structures and standard components.

 Add more components necessary for an application.
 These components are then synthesized.

e System implementation is generated by combining the layouts of
existing and custom components.

* Advantages: faster development, lower cost,

ARM Architecture

Why ARM?

* Leading provider of 32-bit embedded RISC microprocessors
e 75% of market

 Common architecture

* High performance

* Low power consumption
* Low system cost

e Solutions for

* Embedded real-time systems for mass storage, automotive, industrial and
networking applications

* Secure applications — smartcards and SIMs
* Open platforms running complex operating systems

History of ARM

 ARM (Acorn RISC Machine) started as a new, powerful, CPU design for
the replacement of the 8-bit 6502 at Acorn Computers in 1985

* First models had only a 26-bit program counter, limiting the memory
space to 64 MB (a lot at that time)

e 1990 spin-off: ARM renamed Advanced RISC Machines

e ARM now focuses on Embedded CPU cores

* |IP licensing: Almost every silicon manufacturer sells some microcontroller
with an ARM core. Some even compete with their own designs.

* Processing power with low current consumption
* |deal for portable devices

ARM processors vs. ARM architectures

e ARM architecture

» Describes the details of instruction set, programmer’s model, exception
model, and memory map

e Documented in the Architecture Reference Manual

* ARM processor
* Developed using one of the ARM architectures
* More implementation details, such as timing information
 Documented in processor’s Technical Reference Manual

ARM architecture features

* The typical RISC features:
* A large uniform register file

* A load/store architecture, where data-processing operations operate only on
register contents, not directly on memory contents

* Simple addressing modes, with all load/store addresses being determined
from register contents and instruction fields only

* Uniform and fixed-length instructions fields, to simplify instruction decode

ARM architecture features

* Additionally, ARM instruction gives:

e Control over both the ALU and shifter in every data processing instruction to
maximize the use of an ALU and a shifter

e Auto-increment and auto-decrement addressing modes to optimize program
loops

* Load and Store multiple instructions to maximize data throughput
* Conditional execution of all instructions to maximize execution throughput.

* These enhancements to a basic RISC architecture allow ARM
processor to achieve a good balance of high performance, low code
size, low power consumption and low silicon area

ARM processor lines

ARM architectures and processor families can be
profiled into four groups:

The Cortex-M profile
* Processors of the M profile are optimized for cost sensitive
and microcontroller applications, like automotive body
electronics, smart sensors.
The Cortex-A profile
* It aims at high-end applications running open and complex
OSs, like smartphones, tablets, netbooks, eBook readers.
The Cortex-R profile
* It marks processors for real time applications, like mass
storage or printer controllers.
The SecureCore profile

* The ARM SecurCore™ Processpr family_Erovides processors
with security features for applications like smartcards, pay
TV, eGovernement.

Cortex-R

Cortex-M

SecurCore

G
B Ce
B Co
O
O
L]
Ll
L
O
O
0]

2020 EE2222 22

ARM processor modes

* The ARM has seven basic operating modes:

e User: unprivileged mode under which most tasks run
FIQ: entered when a high priority (fast) interrupt is raised
IRQ: entered when a low priority (normal) interrupt is raised

e Supervisor: entered on reset and when a Software Interrupt instruction is
executed

Abort: used to handle memory access violations
Undef: used to handle undefined instructions
System: privileged mode using the same registers as user mode

ARM register set

Application
level view System level views
. 1 I .
* ARM processors provide r Privisged modes
Excaption madas
general-purpose and 2
. Lser | Systam Hyp Supervisor honitor Abart Lindefined IR FlQ
SpeC|a|—purpose mode | mode made ! mode made ¥ mode miode mode made
. RO RO_usr
registers. R |[Riue
R2 R2_usr
. . R3 R3 _usr
 Some additional Ri|[Rd_e
R5 R5_usr
[] [[] Hﬁ- ﬁ
registers are available in [[
o, . RE R&_usr R8_fig
privileged execution Rl s R
R10 R10_usr R10_fig
mOdes, R11 R11_usr R11_fig
R12 R12_usr R12_fig
sP SP_usr SP_hyp' SP_sve SP mon® | SP_abt SP_und SP irg SP g
LR LR_usr B LR svc | LR_mon' | LR_abt | LR_und | LR_img LR_fig
PC PC
APSR | CPSR
SPSR hyp'| SPSR_svc |SPSR_mon®] SPSR_abt | SPSR und | SPSR irg |SPSR fig
ELR_hyp'
5020 T Hyp mode and the associaled banked registers are implemented anly as part of the Yirualization Exiensions

EE222
I Monitor moqu—:e an§ the associatad banked registers are implamented only as part of the Sacurity Extansions

ARM instruction set architecture (Version 1)

* This version was implemented by ARM 1 and was never used in a
commercial product.

* It had only 26-bit address space and is now obsolete.

* It contained:
* The basic data processing instructions (not including multiplies)
* Byte, word, and multi-word LOAD / STORE instructions

* Branch instructions, including a branch-and-link instruction designed for
subroutine calls

* A software interrupt instruction, for use in making Operating System calls

ARM instruction set architecture (Version 2)

* This version extended the Version 1 architecture by adding:
* Multiply and multiply-accumulate instructions
* Coprocessor support
 Two more banked registers in fast interrupt mode

* Atomic load-and-store instructions called SWP and SWPB (in a slightly variant
version called version 2a)

* Version 2 and 2a still only had a 26-bit address space and are now
obsolete

ARM instruction set architecture (Version 3)

* Extended the addressing range to 32-bits

* Program Status information which was stored in R15 previously is now been stored in
the Current Program status Register (CPSR) and Saved Program Status Registers
(SPSRs) to preserve the CPSR contents when an exception occurs.

* The following changes occurred to the instruction set:

* two instructions (MRS and MSR) were added to allow the new CPSR and SPSRs to be
accessed

* the functionality of instructions previously used to return from exceptions was
modified to allow them to continue to be used for that purpose

* Two new processor modes were added to use Data Abort, Prefetch Abort
and undefined Instructions exceptions effectively in Operating System
codes

ARM instruction set architecture (Version 4)

 This version added the following to the architecture Version 3:
* Halfword load/store instructions
* Instructions to load and sign-extend bytes and halfwords
* In T variants, an instruction to transfer to Thumb state
* A new privileged processor mode that uses the User mode registers.

e \Version 4 also made it clearer which instructions should cause the
undefined Instruction exception to be taken.

ARM instruction set architecture (Version 5)

* This version added some new instructions and modified the
definitions of some of the instructions of Version 4 to:
* Improve the efficiency of ARM/Thumb ineterworking in T variants

* Allow the same code generation techniques to be used for non-T variants as
for T variants

* \Version 5 also:

* Adds a count leading zeros instruction, which (among other things) allows
more efficient integer divide and interrupt prioritization routine

* Adds a software breakpoint instruction
* Adds more instruction options for coprocessors designers
* Tightens the definitions of how flags are set by multiply instructions

ARM instruction set architecture (Version 6)

* Key ARMv6 Improvements:
* Memory Management
* Multiprocessing
* Multimedia Support
e Data Handling
* Exceptions and Interrupts

The Thumb Instruction Set (T Variants)

e Thumb Instruction Set are:
* |Introduced with architecture version 4
e Re-encoded subset of ARM instruction set

* Half the size of ARM instructions (16-bits compared with 32), hence greater
code density

* Limitations:

* Thumb code usually uses more instructions for the same job, so ARM code is
usually best for maximizing the performance of time-critical code

* The Thumb instruction set does not include some instructions that are
needed for exception handling, so ARM code needs to be used for at least
top-level exception handlers (Due to this reason Thumb Instruction is used in
conjunction with a suitable ARM instruction set)

Advanced Microcontroller Bus Architecture

(A

MBA)

 AMBA (Advanced Microcontroller Bus Architecture) protocols are an
open standard, on-chip interconnect specification for the connection
and management of functional blocks in a System-on-Chip (SoC).

° It

facilitates right-first-time development of multi-processor designs

with large numbers of controllers and peripherals.

ARM vs. x&86

 ARM processors require significantly fewer transistors than typical PC
processors because of the fact that it has a RISC-based design.

* Fewer transistors minimizes power use, heat and production cost. All
qgualities that are preferred for battery-powered devices such as
laptops, tablets, and smartphones.

* On the other hand x86 processors usually consumes a lot of energy
but the are also a lot faster.

* This makes x86 based processors ideal for desktops, gaming and
super computer that require speed more than energy efficiency.

ARM vs. x&86

* The main difference between ARM and x86 architecture is that ARM
is RISC based while x86 is CISC based.

 CISC design is to execute multiple complex (larger) instructions.
* While the RISC design is perfect for small, simple instructions.
* The ARM has a lot more registers than x86.

* The ARM has a thumb mode to increase code density so programs fit
in less memory.

* All these features help ARM save power almost everywhere it can.

Resources

* The ARM University Program, ARM Architecture Fundamentals
* https://www.youtube.com/watch?list=PLgsfB23JsDOFUtaDmaMskIW1wRtFLj
MTu&v=7LgPJGnBPMM
 ARM lectures by Dr. Santanu Chaudhury, EE Department, IIT Delhi
* http://www.youtube.com/watch?v=4VRtujwa b8&playnext=1&list=PL95AFA4
ABA8B28627&feature=results main
* The ARM Instruction Set Architecture
* http://users.ece.utexas.edu/~valvano/EE345M/Arm EE382N 4.pdf

2020 EE2222 35

https://www.youtube.com/watch?list=PLqsfB23JsD0FUtaDmaMskIW1wRtFLjmTu&v=7LqPJGnBPMM
http://www.youtube.com/watch?v=4VRtujwa_b8&playnext=1&list=PL95AFA4ABA8B28627&feature=results_main
http://users.ece.utexas.edu/~valvano/EE345M/Arm_EE382N_4.pdf

