
System-on-a-Chip (SoC) &
ARM Architecture

EE2222 Computer Interfacing and Microprocessors

Partially based on
System-on-Chip Design by Hao Zheng

2020 EE2222 1

Overview

• A system-on-a-chip (SoC):
• a computing system on a single silicon substrate that integrates both

hardware and software.

• Hardware packages all necessary electronics for a particular
application.
• which implemented by SW running on HW.

• Aim for low power and low cost.
• Also more reliable than multi-component systems.

22020 EE2222

Driven by semiconductor advances

2020 EE2222 3

Basic SoC Model

2020 EE2222 4

52020 EE2222

SoC vs Processors

System on a chip Processors on a chip

processor multiple, simple, heterogeneous few, complex, homogeneous

cache one level, small 2-3 levels, extensive

memory embedded, on chip very large, off chip

functionality special purpose general purpose

interconnect wide, high bandwidth often through cache

power, cost both low both high

operation largely stand-alone need other chips

2020 EE2222 6

• 98% processors sold annually are used in embedded applications.

Embedded Systems

72020 EE2222

Embedded Systems: Design Challenges

• Power/energy efficient:
• mobile & battery powered

• Highly reliable:
• Extreme environment (e.g. temperature)

• Real-time operations:
• predictable performance

• Highly complex
• A modern automobile with 55 electronic control units

• Tightly coupled Software & Hardware

• Rapid development at low price
82020 EE2222

Design Complexity Challenges

9

EECS222A: SoC Description and Modeling Lecture 1

(c) 2012 R. Doemer 8

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 15

Design Complexity Challenge

• Productivity Gap

Hardware design gap

+ Software design gap

= System design gap

HW Design

Productivity

1.6x/18 months

Capability of

Technology

2x/18 months

Software

Productivity

2x/5 years

log

1
9
8

1

1
9

8
5

1
9

8
9

1
9
9

3

1
9

9
7

2
0

0
1

2
0
0

5

2
0
0

9

Average HW +

SW Productivity

Additional SW

required for HW

2x/10 months

System

Design Gap

HW Design

Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2012 R. Doemer 16

Design Complexity Challenge

• Productivity Gaps

– Hardware productivity gap

• Capacities in chip size outpace capabilities in chip design

• Moore’s law: chip capacity doubles every 18 months

• HW design productivity estimated at 1.6x over 18 months

– Software productivity gap

• Growth of SW productivity estimated at 2x every 5 years

• Needs in embedded SW estimated at 2x over 10 months

– System productivity gap

• HW gap + SW gap

Answer to design
complexity challenges:

Move to higher levels of
abstraction

2020 EE2222

Levels of Abstraction

• Circuit:
• network of transistors

• Logic:
• network of basic logic gates

• AND/OR/NOT, latches/FFs, etc.

• Processor:
• network of logic components

• i.e. ALU, MUX, decoders, registers, etc.

• System:
• network of processors, memories, buses, and other custom processing logic

102020 EE2222

SoC Design Flow:
A Simplified View

11

System Specification

HW/SW Partitioning

HW Model SW Program

Synthesis CompilationHW/SW
Co-Verification

System Integration

HW Implementation Binary Image

Exploration/
Estimation

CPU

Mem

HW
Impl.

IF

2020 EE2222

System Synthesis

• Processes -> CPUs or custom logic
• HW/SW partitioning

• Communication -> Buses or NoC

• Flow
• Profiling & Estimation

• Component & connection allocation

• Process and channel binding

• Process scheduling

• IF component insertion

• Model refinement

122020 EE2222

High-Level Synthesis

132020 EE2222

Hardware/Software Co-Design

• Definition:
• HW/SW co-design is the design of cooperating HW components and SW

components in a single design effort.

• Alternative definition:
• HW/SW co-design means meeting system level objectives by exploiting the

synergy of HW and SW through concurrent design.

142020 EE2222

Platform Methodology

• Reuse of previous defined platforms
• With well-defined structures and standard components.

• Add more components necessary for an application.
• These components are then synthesized.

• System implementation is generated by combining the layouts of
existing and custom components.

• Advantages: faster development, lower cost,

152020 EE2222

ARM Architecture

2020 EE2222 16

Why ARM?

• Leading provider of 32-bit embedded RISC microprocessors
• 75% of market

• Common architecture

• High performance

• Low power consumption

• Low system cost

• Solutions for
• Embedded real-time systems for mass storage, automotive, industrial and

networking applications
• Secure applications – smartcards and SIMs

• Open platforms running complex operating systems

2020 EE2222 17

History of ARM

• ARM (Acorn RISC Machine) started as a new, powerful, CPU design for
the replacement of the 8-bit 6502 at Acorn Computers in 1985

• First models had only a 26-bit program counter, limiting the memory
space to 64 MB (a lot at that time)

• 1990 spin-off: ARM renamed Advanced RISC Machines

• ARM now focuses on Embedded CPU cores
• IP licensing: Almost every silicon manufacturer sells some microcontroller

with an ARM core. Some even compete with their own designs.

• Processing power with low current consumption

• Ideal for portable devices

2020 EE2222 18

ARM processors vs. ARM architectures

• ARM architecture
• Describes the details of instruction set, programmer’s model, exception

model, and memory map

• Documented in the Architecture Reference Manual

• ARM processor
• Developed using one of the ARM architectures

• More implementation details, such as timing information

• Documented in processor’s Technical Reference Manual

2020 EE2222 19

ARM architecture features

• The typical RISC features:
• A large uniform register file

• A load/store architecture, where data-processing operations operate only on
register contents, not directly on memory contents

• Simple addressing modes, with all load/store addresses being determined
from register contents and instruction fields only

• Uniform and fixed-length instructions fields, to simplify instruction decode

2020 EE2222 20

ARM architecture features

• Additionally, ARM instruction gives:
• Control over both the ALU and shifter in every data processing instruction to

maximize the use of an ALU and a shifter

• Auto-increment and auto-decrement addressing modes to optimize program
loops

• Load and Store multiple instructions to maximize data throughput

• Conditional execution of all instructions to maximize execution throughput.

• These enhancements to a basic RISC architecture allow ARM
processor to achieve a good balance of high performance, low code
size, low power consumption and low silicon area

2020 EE2222 21

ARM processor lines

• ARM architectures and processor families can be
profiled into four groups:

• The Cortex-M profile
• Processors of the M profile are optimized for cost sensitive

and microcontroller applications, like automotive body
electronics, smart sensors.

• The Cortex-A profile
• It aims at high-end applications running open and complex

OSs, like smartphones, tablets, netbooks, eBook readers.

• The Cortex-R profile
• It marks processors for real time applications, like mass

storage or printer controllers.

• The SecureCore profile
• The ARM SecurCore™ processor family provides processors

with security features for applications like smartcards, pay
TV, eGovernement.

2020 EE2222 22

ARM processor modes

• The ARM has seven basic operating modes:
• User: unprivileged mode under which most tasks run

• FIQ: entered when a high priority (fast) interrupt is raised

• IRQ: entered when a low priority (normal) interrupt is raised

• Supervisor: entered on reset and when a Software Interrupt instruction is
executed

• Abort: used to handle memory access violations

• Undef: used to handle undefined instructions

• System: privileged mode using the same registers as user mode

2020 EE2222 23

ARM register set

• ARM processors provide
general-purpose and
special-purpose
registers.

• Some additional
registers are available in
privileged execution
modes.

2020 EE2222 24

ARM instruction set architecture (Version 1)

• This version was implemented by ARM 1 and was never used in a
commercial product.

• It had only 26-bit address space and is now obsolete.

• It contained:
• The basic data processing instructions (not including multiplies)

• Byte, word, and multi-word LOAD / STORE instructions

• Branch instructions, including a branch-and-link instruction designed for
subroutine calls

• A software interrupt instruction, for use in making Operating System calls

2020 EE2222 25

ARM instruction set architecture (Version 2)

• This version extended the Version 1 architecture by adding:
• Multiply and multiply-accumulate instructions

• Coprocessor support

• Two more banked registers in fast interrupt mode

• Atomic load-and-store instructions called SWP and SWPB (in a slightly variant
version called version 2a)

• Version 2 and 2a still only had a 26-bit address space and are now
obsolete

2020 EE2222 26

ARM instruction set architecture (Version 3)

• Extended the addressing range to 32-bits
• Program Status information which was stored in R15 previously is now been stored in

the Current Program status Register (CPSR) and Saved Program Status Registers
(SPSRs) to preserve the CPSR contents when an exception occurs.

• The following changes occurred to the instruction set:
• two instructions (MRS and MSR) were added to allow the new CPSR and SPSRs to be

accessed
• the functionality of instructions previously used to return from exceptions was

modified to allow them to continue to be used for that purpose

• Two new processor modes were added to use Data Abort, Prefetch Abort
and undefined Instructions exceptions effectively in Operating System
codes

2020 EE2222 27

ARM instruction set architecture (Version 4)

• This version added the following to the architecture Version 3:
• Halfword load/store instructions

• Instructions to load and sign-extend bytes and halfwords

• In T variants , an instruction to transfer to Thumb state

• A new privileged processor mode that uses the User mode registers.

• Version 4 also made it clearer which instructions should cause the
undefined Instruction exception to be taken.

2020 EE2222 28

ARM instruction set architecture (Version 5)

• This version added some new instructions and modified the
definitions of some of the instructions of Version 4 to:
• Improve the efficiency of ARM/Thumb ineterworking in T variants
• Allow the same code generation techniques to be used for non-T variants as

for T variants

• Version 5 also:
• Adds a count leading zeros instruction, which (among other things) allows

more efficient integer divide and interrupt prioritization routine
• Adds a software breakpoint instruction
• Adds more instruction options for coprocessors designers
• Tightens the definitions of how flags are set by multiply instructions

2020 EE2222 29

ARM instruction set architecture (Version 6)

• Key ARMv6 Improvements:
• Memory Management

• Multiprocessing

• Multimedia Support

• Data Handling

• Exceptions and Interrupts

2020 EE2222 30

The Thumb Instruction Set (T Variants)

• Thumb Instruction Set are:
• Introduced with architecture version 4
• Re-encoded subset of ARM instruction set
• Half the size of ARM instructions (16-bits compared with 32), hence greater

code density

• Limitations:
• Thumb code usually uses more instructions for the same job, so ARM code is

usually best for maximizing the performance of time-critical code
• The Thumb instruction set does not include some instructions that are

needed for exception handling, so ARM code needs to be used for at least
top-level exception handlers (Due to this reason Thumb Instruction is used in
conjunction with a suitable ARM instruction set)

2020 EE2222 31

Advanced Microcontroller Bus Architecture
(AMBA)
• AMBA (Advanced Microcontroller Bus Architecture) protocols are an

open standard, on-chip interconnect specification for the connection
and management of functional blocks in a System-on-Chip (SoC).

• It facilitates right-first-time development of multi-processor designs
with large numbers of controllers and peripherals.

2020 EE2222 32

ARM vs. x86

• ARM processors require significantly fewer transistors than typical PC
processors because of the fact that it has a RISC-based design.

• Fewer transistors minimizes power use, heat and production cost. All
qualities that are preferred for battery-powered devices such as
laptops, tablets, and smartphones.

• On the other hand x86 processors usually consumes a lot of energy
but the are also a lot faster.

• This makes x86 based processors ideal for desktops, gaming and
super computer that require speed more than energy efficiency.

2020 EE2222 33

ARM vs. x86

• The main difference between ARM and x86 architecture is that ARM
is RISC based while x86 is CISC based.

• CISC design is to execute multiple complex (larger) instructions.

• While the RISC design is perfect for small, simple instructions.

• The ARM has a lot more registers than x86.

• The ARM has a thumb mode to increase code density so programs fit
in less memory.

• All these features help ARM save power almost everywhere it can.

2020 EE2222 34

Resources

• The ARM University Program, ARM Architecture Fundamentals
• https://www.youtube.com/watch?list=PLqsfB23JsD0FUtaDmaMskIW1wRtFLj

mTu&v=7LqPJGnBPMM

• ARM lectures by Dr. Santanu Chaudhury, EE Department, IIT Delhi
• http://www.youtube.com/watch?v=4VRtujwa_b8&playnext=1&list=PL95AFA4

ABA8B28627&feature=results_main

• The ARM Instruction Set Architecture
• http://users.ece.utexas.edu/~valvano/EE345M/Arm_EE382N_4.pdf

2020 EE2222 35

https://www.youtube.com/watch?list=PLqsfB23JsD0FUtaDmaMskIW1wRtFLjmTu&v=7LqPJGnBPMM
http://www.youtube.com/watch?v=4VRtujwa_b8&playnext=1&list=PL95AFA4ABA8B28627&feature=results_main
http://users.ece.utexas.edu/~valvano/EE345M/Arm_EE382N_4.pdf

