
Assembly Language
Programming

EE2222 Computer Interfacing and Microprocessors

Partially based on
Computer Organization & Assembly Language Programming by Dr Adnan Gutub

Assembly Language for Intel-Based Computers by Dr. Kip Irvine
Introduction to Computing Systems: From Bits and Gates to C and Beyond by Y. Patt and S. Patel

2020 EE2222 1

Some important questions to ask?

• What is Assembly Language?

• Why Learn Assembly Language?

• What is Machine Language?

• How is Assembly related to Machine Language?

• What is an Assembler?

• How is Assembly related to High-Level Language?

• Is Assembly Language portable?

2020 EE2222 2

A Hierarchy of Languages

2020 EE2222 3

Assembly and Machine Language

• Machine language
• Native to a processor: executed directly by hardware
• Instructions consist of binary code: 1s and 0s

• Assembly language
• A programming language that uses symbolic names to represent operations,

registers and memory locations.
• Slightly higher-level language
• Readability of instructions is better than machine language
• One-to-one correspondence with machine language instructions

• Assemblers translate assembly to machine code
• Compilers translate high-level programs to machine code

• Either directly, or
• Indirectly via an assembler

2020 EE2222 4

Compiler and Assembler

2020 EE2222 5

Instructions and Machine Language

• Each command of a program is called an instruction.
• it instructs the computer what to do

• Computers only deal with binary data, hence the instructions must be
in binary format (0s and 1s) .

• The set of all instructions (in binary form) makes up the computer's
machine language.

• This is also referred to as the instruction set.

2020 EE2222 6

Instruction Fields

• Machine language instructions usually are made up of several fields.
Each field specifies different information for the computer. The major
two fields are:

• Opcode field which stands for operation code and it specifies the
particular operation that is to be performed.
• Each operation has its unique opcode.

• Operands fields which specify where to get the source and
destination operands for the operation specified by the opcode.
• The source/destination of operands can be a constant, the memory or one of

the general-purpose registers.

2020 EE2222 7

Assembly vs. Machine Code

2020 EE2222 8

Translating Languages
English: D is assigned the sum of A times B plus 10.

High-Level Language: D = A * B + 10

Intel Assembly Language:

mov eax, A

mul B

add eax, 10

mov D, eax

Intel Machine Language:

A1 00404000

F7 25 00404004

83 C0 0A

A3 00404008

A statement in a high-level language is translated

typically into several machine-level instructions

2020 EE2222 9

Mapping Between Assembly Language and HLL

• Translating HLL programs to machine language programs is not a one-
to-one mapping

• A HLL instruction (usually called a statement) will be translated to one
or more machine language instructions

2020 EE2222 10

Example

• I = J + K
Four-address format

ADD J, K, I, NEXT ; I = J + K
; next instruction in location NEXT

Three-address format
ADD J, K, I ; I = J + K

; next instruction in PC
Two-address format

MOVE J, I ; I = J
ADD K, I ; I = K + I

2020 EE2222 11

Example

• I = J + K
One-address format

LOAD J ; AC = J

ADD K ; AC = J + K

STORE I ; I = AC

Zero-address format, postfix: I = JK+

LOAD J ; push J onto stack

LOAD K ; push K onto stack

ADD ; pop and add J and K, result on top

STORE I ; pop stack top to I

2020 EE2222 12

Advantages of High-Level Languages

• Program development is faster
• High-level statements: fewer instructions to code

• Program maintenance is easier
• For the same above reasons

• Programs are portable
• Contain few machine-dependent details

• Can be used with little or no modifications on different machines

• Compiler translates to the target machine language

• However, Assembly language programs are not portable

2020 EE2222 13

Why Learn Assembly Language?

• Accessibility to system hardware
• Assembly Language is useful for implementing system software
• Also useful for small embedded system applications

• Space and Time efficiency
• Understanding sources of program inefficiency
• Tuning program performance
• Writing compact code

• Writing assembly programs gives the computer designer the needed
deep understanding of the instruction set and how to design one

• To be able to write compilers for HLLs, we need to be expert with the
machine language. Assembly programming provides this experience

2020 EE2222 14

Assembly vs. High-Level Languages

2020 EE2222 15

Assembler

• Software tools are needed for editing, assembling, linking, and
debugging assembly language programs

• An assembler is a program that converts source-code programs
written in assembly language into object files in machine language

• Popular assemblers have emerged over the years for the Intel family
of processors. These include …

• TASM (Turbo Assembler from Borland)

• NASM (Netwide Assembler for both Windows and Linux), and

• GNU assembler distributed by the free software foundation

2020 EE2222 16

Linker and Link Libraries

• You need a linker program to produce executable files

• It combines your program's object file created by the assembler with other
object files and link libraries, and produces a single executable program

• LINK32.EXE is the linker program provided with the MASM distribution for
linking 32-bit programs

• We will also use a link library for input and output

• Called Irvine32.lib developed by Kip Irvine

• Works in Win32 console mode under MS-Windows

2020 EE2222 17

Assemble and Link Process
Source

File

Source

File

Source

File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link

Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

2020 EE2222 18

Debugger

• Allows you to trace the execution of
a program

• Allows you to view code, memory,
registers, etc.

• Example: 32-bit Windows debugger

2020 EE2222 19

Editor

• Allows you to create assembly language source files

• Some editors provide syntax highlighting features and can be
customized as a programming environment

2020 EE2222 20

Programmer’s View of a Computer System
Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Digital Logic
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Increased level

of abstraction

Each level

hides the

details of the

level below it

2020 EE2222 21

Programmer’s View of a Computer System

• Application Programs (Level 5)
• Written in high-level programming languages
• Such as Java, C++, Pascal, Visual Basic . . .
• Programs compile into assembly language level (Level 4)

• Assembly Language (Level 4)
• Instruction mnemonics are used
• Have one-to-one correspondence to machine language
• Calls functions written at the operating system level (Level 3)
• Programs are translated into machine language (Level 2)

• Operating System (Level 3)
• Provides services to level 4 and 5 programs
• Translated to run at the machine instruction level (Level 2)

2020 EE2222 22

Programmer’s View of a Computer System

• Instruction Set Architecture (Level 2)
• Specifies how a processor functions
• Machine instructions, registers, and memory are exposed
• Machine language is executed by Level 1 (microarchitecture)

• Microarchitecture (Level 1)
• Controls the execution of machine instructions (Level 2)
• Implemented by digital logic (Level 0)

• Digital Logic (Level 0)
• Implements the microarchitecture
• Uses digital logic gates
• Logic gates are implemented using transistors

2020 EE2222 23

Assembly Language

2020 EE2222 24

Human-Readable Machine Language

• Computers like ones and zeros…

• Humans like symbols…

• Assembler is a program that turns symbols into
machine instructions.
• ISA-specific:

close correspondence between symbols and instruction set
• mnemonics for opcodes
• labels for memory locations

• additional operations for allocating storage and initializing data

ADD R6,R2,R6 ; increment index reg.

0001110010000110

2020 EE2222 25

An Assembly Language Program
• ;
• ; Program to multiply a number by the constant 6
• ;
• .ORIG x3050
• LD R1, SIX
• LD R2, NUMBER
• AND R3, R3, #0 ; Clear R3. It will
• ; contain the product.
• ; The inner loop
• ;
• AGAIN ADD R3, R3, R2
• ADD R1, R1, #-1 ; R1 keeps track of
• BRp AGAIN ; the iteration.
• ;
• HALT
• ;
• NUMBER.BLKW 1
• SIX .FILL x0006
• ;
• .END

2020 EE2222 26

LC-3 Assembly Language Syntax

• Each line of a program is one of the following:
• an instruction

• an assember directive (or pseudo-op)

• a comment

• Whitespace (between symbols) and case are ignored.

• Comments (beginning with “;”) are also ignored.

• An instruction has the following format:
LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory2020 EE2222 27

Opcodes and Operands

• Opcodes
• reserved symbols that correspond to LC-3 instructions
• listed in Appendix A

• ex: ADD, AND, LD, LDR, …

• Operands
• registers -- specified by Rn, where n is the register number
• numbers -- indicated by # (decimal) or x (hex)
• label -- symbolic name of memory location
• separated by comma
• number, order, and type correspond to instruction format

• ex:
ADD R1,R1,R3
ADD R1,R1,#3
LD R6,NUMBER
BRz LOOP

2020 EE2222 28

Types of Opcodes

• Arithmetic, logical
• add, sub, mult
• and, or
• Cmp

• Memory load/store
• ld, st

• Control transfer
• jmp
• bne

• Complex
• movs

2020 EE2222 29

Operands
• Each operand taken from a particular

addressing mode:

• Examples:

Register add r1, r2, r3

Immediate add r1, r2, 10

Indirect mov r1, (r2)

Offset mov r1, 10(r3)

PC Relative beq 100

• Reflect processor data pathways

2020 EE2222 30

Labels and Comments

• Label
• placed at the beginning of the line
• assigns a symbolic name to the address corresponding to line

• ex:
LOOP ADD R1,R1,#-1

BRp LOOP

• Comment
• anything after a semicolon is a comment
• ignored by assembler
• used by humans to document/understand programs
• tips for useful comments:

• avoid restating the obvious, as “decrement R1”
• provide additional insight, as in “accumulate product in R6”
• use comments to separate pieces of program

2020 EE2222 31

Assembler Directives

• Pseudo-operations
• do not refer to operations executed by program

• used by assembler

• look like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with value n

.STRINGZ n-character

string

allocate n+1 locations,

initialize w/characters and null terminator

2020 EE2222 32

Trap Codes

• LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’t have to remember them.
Code Equivalent Description

HALT TRAP x25 Halt execution and print message to console.

IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.

Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.

GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].

PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.

2020 EE2222 33

Style Guidelines

• Use the following style guidelines to improve the readability and
understandability of your programs:

1. Provide a program header, with author’s name, date, etc., and purpose of program.
2. Start labels, opcode, operands, and comments in same column for each line. (Unless

entire line is a comment.)
3. Use comments to explain what each register does.
4. Give explanatory comment for most instructions.
5. Use meaningful symbolic names.

• Mixed upper and lower case for readability.
• ASCIItoBinary, InputRoutine, SaveR1

6. Provide comments between program sections.
7. Each line must fit on the page -- no wraparound or truncations.

• Long statements split in aesthetically pleasing manner.

2020 EE2222 34

Sample Program

• Count the occurrences of a character in a file.

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

2020 EE2222 35

Char Count in Assembly Language (1 of 3)

• ;
• ; Program to count occurrences of a character in a file.
• ; Character to be input from the keyboard.
• ; Result to be displayed on the monitor.
• ; Program only works if no more than 9 occurrences are found.
• ;
• ;
• ; Initialization
• ;
• .ORIG x3000
• AND R2, R2, #0 ; R2 is counter, initially 0
• LD R3, PTR ; R3 is pointer to characters
• GETC ; R0 gets character input
• LDR R1, R3, #0 ; R1 gets first character
• ;
• ; Test character for end of file
• ;
• TEST ADD R4, R1, #-4 ; Test for EOT (ASCII x04)
• BRz OUTPUT ; If done, prepare the output

2020 EE2222 36

Char Count in Assembly Language (2 of 3)

• ;
• ; Test character for match. If a match, increment count.
• ;
• NOT R1, R1
• ADD R1, R1, R0 ; If match, R1 = xFFFF
• NOT R1, R1 ; If match, R1 = x0000
• BRnp GETCHAR ; If no match, do not increment
• ADD R2, R2, #1
• ;
• ; Get next character from file.
• ;
• GETCHAR ADD R3, R3, #1 ; Point to next character.
• LDR R1, R3, #0 ; R1 gets next char to test
• BRnzp TEST
• ;
• ; Output the count.
• ;
• OUTPUT LD R0, ASCII ; Load the ASCII template
• ADD R0, R0, R2 ; Covert binary count to ASCII
• OUT ; ASCII code in R0 is displayed.
• HALT ; Halt machine

2020 EE2222 37

Char Count in Assembly Language (3 of 3)

• ;
• ; Storage for pointer and ASCII template
• ;
• ASCII .FILL x0030
• PTR .FILL x4000
• .END

2020 EE2222 38

Assembly Process

• Convert assembly language file (.asm) into an executable file (.obj) for the LC-3
simulator.

• First Pass:
• scan program file
• find all labels and calculate the corresponding addresses;

this is called the symbol table

• Second Pass:
• convert instructions to machine language,

using information from symbol table

7-392020 EE2222

First Pass: Constructing the Symbol Table

1. Find the .ORIG statement,
which tells us the address of the first instruction.
• Initialize location counter (LC), which keeps track of the

current instruction.

2. For each non-empty line in the program:
a) If line contains a label, add label and LC to symbol table.
b) Increment LC.

– NOTE: If statement is .BLKW or .STRINGZ,
increment LC by the number of words allocated.

3. Stop when .END statement is reached.

• NOTE: A line that contains only a comment is considered an empty line.

2020 EE2222 40

Second Pass: Generating Machine Language

• For each executable assembly language statement,
generate the corresponding machine language instruction.
• If operand is a label,

look up the address from the symbol table.

• Potential problems:
• Improper number or type of arguments

• ex: NOT R1,#7
ADD R1,R2
ADD R3,R3,NUMBER

• Immediate argument too large
• ex: ADD R1,R2,#1023

• Address (associated with label) more than 256 from instruction
• can’t use PC-relative addressing mode

2020 EE2222 41

LC-3 Assembler

• Using “assemble” (Unix) or LC3Edit (Windows),generates several
different output files.

This one gets
loaded into the
simulator.

2020 EE2222 42

Object File Format

• LC-3 object file contains
• Starting address (location where program must be loaded),

followed by…

• Machine instructions

• Example
• Beginning of “count character” object file looks like this:

0011000000000000

0101010010100000

0010011000010001

1111000000100011

.

.

.

.ORIG x3000

AND R2, R2, #0

LD R3, PTR

TRAP x23

2020 EE2222 43

Multiple Object Files

• An object file is not necessarily a complete program.
• system-provided library routines

• code blocks written by multiple developers

• For LC-3 simulator, can load multiple object files into memory, then
start executing at a desired address.
• system routines, such as keyboard input, are loaded automatically

• loaded into “system memory,” below x3000

• user code should be loaded between x3000 and xFDFF

• each object file includes a starting address

• be careful not to load overlapping object files

2020 EE2222 44

Linking and Loading

• Loading is the process of copying an executable image
into memory.
• more sophisticated loaders are able to relocate images

to fit into available memory
• must readjust branch targets, load/store addresses

• Linking is the process of resolving symbols between
independent object files.
• suppose we define a symbol in one module,

and want to use it in another
• some notation, such as .EXTERNAL, is used to tell assembler that a symbol is

defined in another module
• linker will search symbol tables of other modules to resolve symbols and complete

code generation before loading

2020 EE2222 45

Types of Assembly Languages

• Assembly language closely tied to processor architecture

• At least four main types:
• CISC: Complex Instruction-Set Computer

• RISC: Reduced Instruction-Set Computer

• DSP: Digital Signal Processor

• VLIW: Very Long Instruction Word

2020 EE2222 46

CISC Assembly Language

• Developed when people wrote assembly language

• Complicated, often specialized instructions with many effects

• Examples from x86 architecture
• String move

• Procedure enter, leave

• Many, complicated addressing modes

• So complicated, often executed by a little program (microcode)

2020 EE2222 47

RISC Assembly Language

• Response to growing use of compilers

• Easier-to-target, uniform instruction sets

• “Make the most common operations as fast as possible”

• Load-store architecture:
• Arithmetic only performed on registers

• Memory load/store instructions for memory-register transfers

• Designed to be pipelined

2020 EE2222 48

DSP Assembly Language

• Digital signal processors designed specifically for signal processing
algorithms

• Lots of regular arithmetic on vectors

• Often written by hand

• Irregular architectures to save power, area

• Substantial instruction-level parallelism

2020 EE2222 49

Lab Tutorials

• http://ccom.uprrp.edu/~rarce/ccom4995/site/labs/lab03-ru/

2020 EE2222 50

http://ccom.uprrp.edu/~rarce/ccom4995/site/labs/lab03-ru/

