
Digital Number Systems
EE2222 Computer Interfacing and Microprocessors

Partially based on
Microprocessors and Embedded Systems by Hui Wu, UNSW

Number Systems by Dr. Paul Beame, University of Washington
Number Systems: Negative Numbers by Dr. Chung-Kuan Cheng, UC San Diego

2020 EE2222 1

Numbers: Positional notation

• Number Base b => b symbols per digit:
• Base 10 (Decimal) : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Base 2 (Binary) : 0, 1

• In general, given a base b, and number of digits p, the number is
written as

• The leftmost, dp-1, is the most significant digit, d0 , the rightmost is
the least significant digit.

• 1011010 = 1x26 + 0x25 + 1x24 + 1x23 + 0x22 + 1x2 + 0x1 = 64 + 16 + 8 + 2 = 90

2020 EE2222 2

Digital numbers

• Digital = discrete
• Binary codes (example: Binary Coded Decimal)

• Binary codes
• Represent symbols using binary digits (bits)

• Digital computers:
• I/O is digital

• ASCII, decimal, etc.

• Internal representation is binary
• Process information in bits

Decimal
Symbols

0
1
2
3
4
5
6
7
8
9

BCD
Code
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

2020 EE2222 3

Digital numbers

• Binary numbers
• Computers work with 0’s and 1’s; binary is like the alphabets of a language

• Base conversion
• For convenience, people use other bases (like octal, decimal, hexadecimal)

• Need to know how to convert from one to another

• Number systems
• There are more than one way to express a number in binary.

• So 1010 could be 10, -2, -5 or -6 and need to know which one.

• A/D and D/A conversion
• Real world signals come in continuous/analog format

• It is good to know how they become 0’s and 1’s (and vice versa)
2020 EE2222 4

Binary Numbers: Base 2

• Bases we will use
• Binary: Base 2

• 0,1

• Octal: Base 8
• 0,1,2,3,4,5,6,7

• Decimal: Base 10
• 0,1,2,3,4,5,6,7,8,9

• Hexadecimal: Base 16
• 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• Positional number system
• 1012= 1×22 + 0×21 + 1×20

• 638 = 6×81 + 3×80

• A116= 10×161 + 1×160

• Addition and subtraction

2020 EE2222 5

1011

+ 1010

10101

1011

– 0110

0101

Hexadecimal Numbers: Base 16

• Digits:
• 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• Normal digits have expected values

• In addition:
• A ➔ 10

• B ➔ 11

• C ➔ 12

• D ➔ 13

• E ➔ 14

• F ➔ 15

EE2222 62020

Hexadecimal Numbers: Base 16

• Example (convert hex to decimal):
B28F0DD = (Bx166) + (2x165) + (8x164) + (Fx163) + (0x162) + (Dx161) + (Dx160)

= (11x166) + (2x165) + (8x164) + (15x163) + (0x162) + (13x161) + (13x160)

= 187232477 decimal

• Notice that a 7 digit hex number turns out to be a 9 digit decimal
number

EE2222 72020

Decimal vs. Hexadecimal vs. Binary

• Examples:
• 1010 1100 0101 (binary)

= ? (hex)

• 10111 (binary)
= 0001 0111 (binary)
= ? (hex)

• 3F9(hex)
= ? (binary)

00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

EE2222 82020

Binary → hex/decimal/octal conversion

• Conversion from binary to octal/hex
• Binary : 10011110001

• Octal : 10 | 011 | 110 | 001=23618

• Hex : 100 | 1111 | 0001=4F116

• Conversion from binary to decimal
• 1012= 1×22 + 0×21 + 1×20 = 510

• 63.48 = 6×81 + 3×80 + 4×8–1 = 51.510

• A116= 10×161 + 1×160 = 16110

2020 EE2222 9

Decimal → binary/octal/hex conversion

• Why does this work?
• N=5610=1110002

• Q=N/2=56/2=111000/2=11100 remainder 0

• Each successive divide liberates an LSB (least significant bit)

2020 EE2222 10

Hex → binary conversion

• HEX is a more compact representation of Binary!

• Each hex digit represents 16 decimal values.

• Four binary digits represent 16 decimal values.

• Therefore, each hex digit can replace four binary digits.

• Example:
• 0011 1011 1001 1010 1100 1010 0000 0000two

• 3 b 9 a c a 0 0hex

C uses notation 0x3b9aca00

2020 EE2222 11

Which Base Should We Use?

• Decimal: Great for humans; most arithmetic is done with these.

• Binary: This is what computers use, so get used to them. Become
familiar with how to do basic arithmetic with them (+,-,*,/).

• Hex: Terrible for arithmetic;
• But if we are looking at long strings of binary numbers, it’s much easier to

convert them to hex in order to look at four bits at a time.

2020 EE2222 12

How Do We Tell the Difference?

• In general, append a subscript at the end of a number stating the
base:

• 1010 is in decimal

• 102 is binary (= 210)

• 1016 is hex (= 1610)

• When dealing with AVR microcontrollers:

• Hex numbers are preceded with “$” or “0x”

• $10 == 0x10 == 1016 == 1610

• Binary numbers are preceded with “0b”

• Octal numbers are preceded with “0” (zero)

• Everything else by default is Decimal2020 EE2222 13

Inside the Computer

• To a computer, numbers are always in binary; all that matters is how
they are printed out: binary, decimal, hex, etc.

• As a result, it doesn’t matter what base a number in C is in...
• 3210 == 0x20 == 1000002

• Only the value of the number matters.

2020 EE2222 14

Bits Can Represent Everything

• Characters?
• 26 letter => 5 bits

• Upper/lower case + punctuation => 7 bits (in 8) (ASCII)

• Rest of the world’s languages => 16 bits (Unicode)

• Logical values?
• 0 -> False, 1 => True

• Colors ?

• Locations / addresses? commands?

• But N bits => only 2N things
2020 EE2222 15

What if too big?

• Numbers really have an infinite number of digits
• with almost all being zero except for a few of the rightmost digits:

• e.g: 0000000 … 000098 == 98

• Just don’t normally show leading zeros

• Computers have fixed number of digits
• Adding two n-bit numbers may produce an (n+1)-bit result.

• Since registers’ length (8 bits on AVR) is fixed, this is a problem.

• If the result of add (or any other arithmetic operation), cannot be represented
by a register, overflow is said to have occurred

2020 EE2222 16

An Overflow Example

• Example (using 4-bit numbers):
+15 1111

+3 0011

+18 10010

• But we don’t have room for 5-bit solution, so the solution would be
0010, which is +2, which is wrong.

2020 EE2222 17

How avoid overflow, allow it sometimes?

• Some languages detect overflow (Ada), some don’t (C and JAVA)

• Some processors have overflow flags
• AVR has N, Z, C and V flags to keep track of overflow

2020 EE2222 18

How to Represent Negative Numbers?

• So far, unsigned numbers

• Historically: 3 approaches
• Sign-and-magnitude

• Ones-complement

• Twos-complement

• For all 3, the most-significant bit (MSB) is the sign digit
• 0 ≡ positive

• 1 ≡ negative

• Twos-complement is the important one
• Simplifies arithmetic

• Used almost universally
2020 EE2222 19

Sign-and-magnitude

• Obvious solution: define leftmost bit to be sign!

• The most-significant bit (MSB) is the sign digit
• 0 ≡ positive; 1 ≡ negative

• The remaining bits are the number’s magnitude

• +110 would be: 0000 0001

• - 110 in sign and magnitude would be: 1000 0001

2020 EE2222 20

Shortcomings of sign-and-magnitude

• Problem 1:
• Two representations for zero

• 0 = 0000 and also -0 = 1000

• Problem 2:
• Arithmetic circuit is more complicated

• Special steps depending whether signs are the same or not

• Sign and magnitude abandoned because another solution was better

2020 EE2222 21

Ones-complement

• Invert the 0s & 1s of a equivalent binary number provides the 1s
complement.

• For positive integer x, represent -x:
• Formula: 2n – 1 – x

• i.e. n=4, 24 – 1 – x = 15 – x

• In binary: (1 1 1 1) – (b3 b2 b1 b0)

• Just flip all the bits.

2020 EE2222 22

Ones-complement

• Examples:
• 710 = 000001112

• -710 = 111110002

• Questions:
• What is -000000002?

• How many positive numbers in N bits?

• How many negative numbers in N bits?

EE2222 232020

Ones-complement

• Negative number: Bitwise complement positive number
• 0111 ≡ 710

• 1000 ≡ –710

• Solves the arithmetic problem

• Remaining problem: Two representations for zero
• 0 = 0000 and also –0 = 1111

2020 EE2222 24

Why ones-complement works?

• The ones-complement of an 8-bit positive y is 111111112 – y

• What is 111111112 ?
• 1 less than 1 000000002 ≡ 28 ≡ 25610

• So in ones-complement –y is represented by (28 -1) – y

• Adding representations of x and –y where x, y are positive:
we get (28 -1) + x – y

• If x < y then x - y < 0 there is no carry and get –ve number
• Just add the representations if no carry

• If x > y then x - y > 0 there is a carry and get +ve number
• Need to add 1 and ignore the 28, i.e. “add the carry”

• If x = y then answer should be 0, get 28-1 =111111112

2020 EE2222 25

Arithmetic Operations: 1’s Complement

Input: two positive integers x & y,

1. We represent the operands in
one’s complement.

2. We sum up the two operands.

3. We delete 2n-1 if there is carry
out at left.

4. The result is the solution in
one’s complement.

Arithmetic 1’s complement

x + y x + y

x - y x + (2n -1- y) = 2n-1+(x-y)

-x + y (2n -1-x) + y =2n-1+(-x+y)

-x - y (2n -1-x) + (2n -1-y) = 2n-1+(2n-1-x-y)

2020 EE2222 26

Arithmetic Operations: Example: 4 – 3 = 1

27

0100 (4 in decimal)
+ 1100 (12 in decimal or 15-3)
1,0000 (16 in decimal or 15+1)

0001(after deleting 2n-1)

410 = 01002

310 = 00112 -310→ 11002 in one’s complement

We discard the extra 1 at the left which is 2n and add one
at the first bit.
2020 EE2222

Arithmetic Operations: Example: -4 +3 = -1

28

1011 (11 in decimal or 15-4)
+ 0011 (3 in decimal)

1110 (14 in decimal or 15-1)

410 = 01002 -410 → Using one’s comp.→ 10112

(Invert bits)

310 = 00112

If the left-most bit is 1, it means that we have a negative
number.

2020 EE2222

Two’s complement

• Add 1 to the one's complement provides the two's complement.

• For positive integer x, represent -x:
• Formula: 2n – x

• i.e. n=4, 24 – x = 16 – x

• In binary: (1 0 0 0 0) – (0 b3 b2 b1 b0)

• Just flip all the bits and add 1.

2020 EE2222 29

Twos-complement

• Negative number: Bitwise complement plus one
• 0111 ≡ 710

• 1001 ≡ –710

• Number wheel
• Only one zero!

• MSB is the sign digit

• 0 ≡ positive

• 1 ≡ negative

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

2020 EE2222 30

Twos-complement

• Complementing a complement the original number

• Arithmetic is easy
• Subtraction = negation and addition

• Easy to implement in hardware

2020 EE2222 31

Why twos-complement works better

• Recall:
• The ones-complement of a b-bit positive y is (2b-1) – y

• Adding 1 to get the twos-complement represents –y by 2b – y
• So -y and 2b – y are equal mod 2b

(leave the same remainder when divided by 2b)

• Ignoring carries is equivalent to doing arithmetic mod 2b

• Adding representations of x and –y yields 2b + x – y
• If there is a carry then that means x y and dropping the carry yields x-y

• If there is no carry then x < y and then we can think of it as 2b – (y-x)

2020 EE2222 32

Arithmetic Operations: 2’s Complement

Input: two positive integers x & y,

1. We represent the operands in
two’s complement.

2. We sum up the two operands
and ignore bit n.

3. The result is the solution in
two’s complement.

Arithmetic 2’s complement

x + y x + y

x - y x + (2n - y) = 2n+(x-y)

-x + y (2n - x) + y =2n+(-x+y)

-x - y (2n - x) + (2n - y) = 2n+2n-x-y

2020 EE2222 33

Arithmetic Operations: Example: 4 – 3 = 1

34

0100
+ 1101
10001 → 1 (after discarding extra bit)

410 = 01002

310 = 00112 -310→ 11012

We discard the extra 1 at the left which is 2n from 2’s
complement of -3. Note that bit bn-1 is 0. Thus, the result
is positive.
2020 EE2222

Arithmetic Operations: Example: -4 +3 = -1

35

1100
+ 0011

1111 → Using two’s comp. → 0000 + 1 = 1, so our answer is -1

410 = 01002 -410 → Using two’s comp.→ 1011 + 1 = 11002

(Invert bits)
310 = 00112

If left-most bit is 1, it means that we have a negative
number.

2020 EE2222

Twos-complement overflow

• The rules for detecting overflow in a two's complement sum are
simple:

• Summing two positive numbers can give negative result

• Summing two negative numbers can give a positive result

2020 EE2222 36

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

6 + 4 ⇒ –6 –7 – 3 ⇒ +6

Representing fractional numbers

• To represent fractional numbers, we simply extend the positional
system to include digits corresponding to negative powers.

• A number which includes a q bit fractional part, for a total of p+q bits:

• and its value is:

• Two’s complement for fractional numbers:
• 1.687510 = 01.10112

• –1.687510 = 10.01012

2020 EE2222 37

Sign extension

• increasing the number of bits of a binary number while preserving
the number's sign (positive/negative) and value

• done by appending digits to the most significant side of the number

• Example:
• Write +6 and –6 as 2’s complement

• 0110 and 1010

• Sign extend to 8-bit bytes
• 00000110 and 11111010

2020 EE2222 38

Still…

• Can’t infer a representation from a number
• 11001 is 25 (unsigned)

• 11001 is –9 (sign magnitude)

• 11001 is –6 (ones complement)

• 11001 is –7 (twos complement)

2020 EE2222 39

Summary

• Positional notation

• Binary/Octal/Decimal/Hexadecimal numbers

• Negative numbers
• Sign-and-magnitude

• Ones-complement

• Twos-complement

• Arithmetic operations

• Representing fractional numbers

2020 EE2222 40

