Digital Number Systems

EE2222 Computer Interfacing and Microprocessors

Partially based on Microprocessors and Embedded Systems by Hui Wu, UNSW Number Systems by Dr. Paul Beame, University of Washington Number Systems: Negative Numbers by Dr. Chung-Kuan Cheng, UC San Diego

Numbers: Positional notation

- Number Base b => b symbols per digit:
 - Base 10 (Decimal) : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Base 2 (Binary) :0,1
- In general, given a base b, and number of digits p, the number is written as

$$d_{p-1}d_{p-2}...d_2d_1d_0$$

 $value = d_{p-1} \times b^{p-1} + d_{m-2} \times b_{p-2} + ...d_2 \times b_2 + d_1 \times b + d_0$

- The leftmost, d_{p-1} , is the **most significant digit**, d_0 , the rightmost is the **least significant digit**.
 - $1011010 = 1x2^{6} + 0x2^{5} + 1x2^{4} + 1x2^{3} + 0x2^{2} + 1x2 + 0x1 = 64 + 16 + 8 + 2 = 90$

Digital numbers

- Digital = discrete
 - Binary codes (example: Binary Coded Decimal)
- Binary codes
 - Represent symbols using binary digits (bits)
- Digital computers:
 - I/O is digital
 - ASCII, decimal, etc.
 - Internal representation is binary
 - Process information in bits

Decimal	BCD
<u>Symbols</u>	<u>Code</u>
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Digital numbers

- Binary numbers
 - Computers work with 0's and 1's; binary is like the alphabets of a language
- Base conversion
 - For convenience, people use other bases (like octal, decimal, hexadecimal)
 - Need to know how to convert from one to another
- Number systems

2020

- There are more than one way to express a number in binary.
- So 1010 could be 10, -2, -5 or -6 and need to know which one.
- A/D and D/A conversion
 - Real world signals come in continuous/analog format
 - It is good to know how they become 0's and 1's (and vice versa)

Binary Numbers: Base 2

- Bases we will use
 - Binary: Base 2
 - 0,1
 - Octal: Base 8
 - 0,1,2,3,4,5,6,7
 - Decimal: Base 10
 - 0,1,2,3,4,5,6,7,8,9
 - Hexadecimal: Base 16
 - 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

- Positional number system
 - $101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
 - $63_8 = 6 \times 8^1 + 3 \times 8^0$
 - A1₁₆= 10×16¹ + 1×16⁰
- Addition and subtraction

1011	1011
+ 1010	- 0110
10101	0101

Hexadecimal Numbers: Base 16

- Digits:
 - 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Normal digits have expected values
- In addition:
 - A **→** 10
 - B → 11
 - C → 12
 - D **→** 13
 - E → 14
 - F → 15

Hexadecimal Numbers: Base 16

• Example (convert hex to decimal):

B28F0DD = (Bx166) + (2x165) + (8x164) + (Fx163) + (0x162) + (Dx161) + (Dx160)= (11x166) + (2x165) + (8x164) + (15x163) + (0x162) + (13x161) + (13x160)

= 187232477 decimal

 Notice that a 7 digit hex number turns out to be a 9 digit decimal number

Decimal vs. Hexadecimal vs. Binary

• Examples: • 1010 1100 0101 (binary) = ? (hex) • 10111 (binary) = 0001 0111 (binary) = ? (hex) А В • 3F9(hex) С = ? (binary) D Ε

F

Binary \rightarrow hex/decimal/octal conversion

- Conversion from binary to octal/hex
 - Binary : 10011110001
 - Octal : 10 | 011 | 110 | 001=2361₈
 - Hex : 100 | 1111 | 0001=4F1₁₆
- Conversion from binary to decimal
 - $101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 5_{10}$
 - $63.4_8 = 6 \times 8^1 + 3 \times 8^0 + 4 \times 8^{-1} = 51.5_{10}$
 - $A1_{16} = 10 \times 16^1 + 1 \times 16^0 = 161_{10}$

Decimal \rightarrow binary/octal/hex conversion

<u>Binary</u>				<u>Octal</u>		
	<u>Quotient</u>	<u>Remainder</u>		Quotient	<u>Remainder</u>	
56÷2=	28	0	56÷8	= 7	0	
28÷2=	: 14	0	7÷8=	0	7	
14÷2=	- 7	0				
7÷2=	3	1				
3÷2=	1	1	56 ₁₀ =	1110002		
1÷2=	0	1	56 ₁₀ =	70_{8}		

- Why does this work?
 - N=56₁₀=111000₂
 - Q=N/2=56/2=111000/2=11100 remainder 0
- Each successive divide liberates an LSB (least significant bit)

Hex \rightarrow binary conversion

- HEX is a more compact representation of Binary!
- Each hex digit represents 16 decimal values.
- Four binary digits represent 16 decimal values.
- Therefore, each hex digit can replace four binary digits.
- Example:

 - 3 b 9 a c a 0 0_{hex} C uses notation 0x3b9aca00

Which Base Should We Use?

- Decimal: Great for humans; most arithmetic is done with these.
- Binary: This is what computers use, so get used to them. Become familiar with how to do basic arithmetic with them (+,-,*,/).
- Hex: Terrible for arithmetic;
 - But if we are looking at long strings of binary numbers, it's much easier to convert them to hex in order to look at four bits at a time.

How Do We Tell the Difference?

- In general, append a subscript at the end of a number stating the base:
 - 10₁₀ is in decimal
 - 10₂ is binary (= 2₁₀)
 - 10₁₆ is hex (= 16₁₀)
- When dealing with AVR microcontrollers:
 - Hex numbers are preceded with "\$" or "0x"
 - $$10 == 0 \times 10 == 10_{16} == 16_{10}$
 - Binary numbers are preceded with "0b"
 - Octal numbers are preceded with "0" (zero)
- Everything else by default is Decima²²²

Inside the Computer

- To a computer, numbers are always in binary; all that matters is how they are printed out: binary, decimal, hex, etc.
- As a result, it doesn't matter what base a number in C is in...
 - $32_{10} == 0 \times 20 == 100000_2$
- Only the value of the number matters.

Bits Can Represent Everything

- Characters?
 - 26 letter => 5 bits
 - Upper/lower case + punctuation => 7 bits (in 8) (ASCII)
 - Rest of the world's languages => 16 bits (Unicode)
- Logical values?
 - 0 -> False, 1 => True
- Colors ?
- Locations / addresses? commands?
- But N bits => only 2^N things

What if too big?

- Numbers really have an infinite number of digits
 - with almost all being zero except for a few of the rightmost digits:
 - e.g: 0000000 ... 000098 == 98
 - Just don't normally show leading zeros
- Computers have fixed number of digits
 - Adding two n-bit numbers may produce an (n+1)-bit result.
 - Since registers' length (8 bits on AVR) is fixed, this is a problem.
 - If the result of add (or any other arithmetic operation), cannot be represented by a register, overflow is said to have occurred

An Overflow Example

• Example (using 4-bit numbers):

+15	1111
+3	0011
+18	<mark>1</mark> 0010

• But we don't have room for 5-bit solution, so the solution would be 0010, which is +2, which is wrong.

How avoid overflow, allow it sometimes?

- Some languages detect overflow (Ada), some don't (C and JAVA)
- Some processors have overflow flags
 - AVR has N, Z, C and V flags to keep track of overflow

How to Represent Negative Numbers?

- So far, unsigned numbers
- Historically: 3 approaches
 - Sign-and-magnitude
 - Ones-complement
 - Twos-complement
- For all 3, the most-significant bit (MSB) is the sign digit
 - $0 \equiv \text{positive}$
 - 1 ≡ negative
- Twos-complement is the important one
 - Simplifies arithmetic
 - Used almost universally

Sign-and-magnitude

- Obvious solution: define leftmost bit to be sign!
- The most-significant bit (MSB) is the sign digit
 - $0 \equiv \text{positive}; 1 \equiv \text{negative}$
- The remaining bits are the number's magnitude
- +1₁₀ would be: 0000 0001
- - 1_{10} in sign and magnitude would be: 1000 0001

	Add	Subtract		Co	mpare and	subtract	
4	0100	4	0100	0100	- 4	1100	1100
+ 3	+ 0011	- 3	+ 1011	- 0011	+ 3	+ 0011	- 0011
= 7	= 0111	= 1	≠ 1111	= 0001	- 1	≠ 1111	= 1001

Shortcomings of sign-and-magnitude

- Problem 1:
 - Two representations for zero
 - 0 = 0000 and also -0 = 1000
- Problem 2:
 - Arithmetic circuit is more complicated
 - Special steps depending whether signs are the same or not
- Sign and magnitude abandoned because another solution was better

Ones-complement

- Invert the 0s & 1s of a equivalent binary number provides the 1s complement.
- For positive integer x, represent -x:
 - Formula: 2ⁿ−1−x
 - i.e. n=4, $2^4 1 x = 15 x$
 - In binary: $(1 \ 1 \ 1 \ 1) (b_3 \ b_2 \ b_1 \ b_0)$
 - Just flip all the bits.

Ones-complement

- Examples:
 - $7_{10} = 00000111_2$
 - $-7_{10} = 11111000_2$
- Questions:
 - What is -0000000₂?
 - How many positive numbers in N bits?
 - How many negative numbers in N bits?

Ones-complement

- Negative number: Bitwise complement positive number
 - 0111 $\equiv 7_{10}$
 - $1000 \equiv -7_{10}$

Add

• Solves the arithmetic problem

Invert and add

4	0100	4	0100	- 4	1011
+ 3	+ 0011	- 3	+ 1100	+ 3	+ 0011
= 7	= 0111	= 1	1 0000	- 1	1110
		add carry:	+1		
			= 0001		

- Remaining problem: Two representations for zero
 - 0 = 0000 and also -0 = 1111

Why ones-complement works?

- The ones-complement of an 8-bit positive y is $1111111_2 y$
- What is 1111111₂ ?
 - 1 less than $1\ 0000000_2 \equiv 2^8 \equiv 256_{10}$
 - So in ones-complement –y is represented by $(2^8 1) y$
- Adding representations of x and -y where x, y are positive: we get (2⁸ -1) + x - y
 - If x < y then x y < 0 there is no carry and get –ve number
 - Just add the representations if no carry
 - If x > y then x y > 0 there is a carry and get +ve number
 - Need to add 1 and ignore the 2⁸, i.e. "add the carry"
 - If x = y then answer should be 0, get 2⁸-1 =1111111₂

Arithmetic Operations: 1's Complement

Input: two positive integers x & y,

- 1. We represent the operands in one's complement.
- 2. We sum up the two operands.
- 3. We delete 2ⁿ-1 if there is carry out at left.
- 4. The result is the solution in one's complement.

Arithmetic	1's complement
x + y	x + y
х - у	$x + (2^n - 1 - y) = 2^n - 1 + (x - y)$
-x + y	$(2^{n} - 1 - x) + y = 2^{n} - 1 + (-x + y)$
-x - y	$(2^{n} - 1 - x) + (2^{n} - 1 - y) = 2^{n} - 1 + (2^{n} - 1 - x - y)$

Arithmetic Operations: Example: 4 - 3 = 1

 $4_{10} = 0100_2$

 $3_{10} = 0011_2$ $-3_{10} \rightarrow 1100_2$ in one's complement

0100 (4 in decimal)

- + 1100 (12 in decimal or 15-3)
- 1,0000 (16 in decimal or 15+1) 0001(after deleting 2ⁿ-1)

We discard the extra 1 at the left which is 2ⁿ and add one at the first bit.

Arithmetic Operations: Example: -4 +3 = -1

 $4_{10} = 0100_2$ -4_{10} → Using one's comp. → 1011_2 (Invert bits) $3_{10} = 0011_2$

1011 (11 in decimal or 15-4) + 0011 (3 in decimal) 1110 (14 in decimal or 15-1)

If the left-most bit is 1, it means that we have a negative number.

Two's complement

- Add 1 to the one's complement provides the two's complement.
- For positive integer x, represent -x:
 - Formula: 2ⁿ x
 - i.e. n=4, $2^4 x = 16 x$
 - In binary: $(1 \ 0 \ 0 \ 0) (0 \ b_3 \ b_2 \ b_1 \ b_0)$
 - Just flip all the bits and add 1.

Twos-complement

- Negative number: Bitwise complement plus one
 - 0111 $\equiv 7_{10}$
 - $1001 \equiv -7_{10}$
- Number wheel
 - Only one zero!
 - MSB is the sign digit
 - 0 ≡ positive
 - 1 ≡ negative

Twos-complement

- Complementing a complement \Box the original number
- Arithmetic is easy
 - Subtraction = negation and addition
 - Easy to implement in hardware

	Add	Invert and add		Invert	Invert and add	
4	0100	4	0100	- 4	1100	
+ 3	+ 0011	- 3	+ 1101	+ 3	+ 0011	
= 7	= 0111	= 1	1 0001	- 1	1111	
		drop carry	= 0001			

Why twos-complement works better

- Recall:
 - The ones-complement of a b-bit positive y is $(2^{b}-1) y$
- Adding 1 to get the twos-complement represents -y by $2^{b} y$
 - So -y and 2^b y are equal mod 2^b
 (leave the same remainder when divided by 2^b)
 - Ignoring carries is equivalent to doing arithmetic mod 2^b
- Adding representations of x and -y yields $2^b + x y$
 - If there is a carry then that means $x \ge y$ and dropping the carry yields x-y
 - If there is no carry then x < y and then we can think of it as $2^{b} (y-x)$

Arithmetic Operations: 2's Complement

Input: two positive integers x & y,

- 1. We represent the operands in two's complement.
- 2. We sum up the two operands and ignore bit n.
- 3. The result is the solution in two's complement.

Arithmetic	2's complement
x + y	x + y
x - y	$x + (2^n - y) = 2^n + (x - y)$
-x + y	$(2^{n} - x) + y = 2^{n} + (-x + y)$
-x - y	$(2^{n} - x) + (2^{n} - y) = 2^{n} + 2^{n} - x - y$

Arithmetic Operations: Example: 4 - 3 = 1

- $4_{10} = 0100_2$
- $3_{10} = 0011_2 \quad -3_{10} \rightarrow 1101_2$

0100

 $\frac{+\ 1101}{10001} \rightarrow 1 \text{ (after discarding extra bit)}$

We discard the extra 1 at the left which is 2^{n} from 2's complement of -3. Note that bit b_{n-1} is 0. Thus, the result is positive.

Arithmetic Operations: Example: -4 +3 = -1

 $4_{10} = 0100_2$ -4₁₀ → Using two's comp. → 1011 + 1 = 1100₂ (Invert bits) $3_{10} = 0011_2$

1100

+ 0011

1111 \rightarrow Using two's comp. \rightarrow 0000 + 1 = 1, so our answer is -1

If left-most bit is 1, it means that we have a negative number.

Twos-complement overflow

- The rules for detecting overflow in a two's complement sum are simple:
 - Summing two positive numbers can give negative result
 - Summing two negative numbers can give a positive result

Representing fractional numbers

- To represent fractional numbers, we simply extend the positional system to include digits corresponding to negative powers.
- A number which includes a q bit fractional part, for a total of p+q bits:

 $d_{p-1}d_{p-2}\ldots d_2d_1d_0.d_{-1}d_{-2}\ldots d_{-q+1}d_{-q}$

• and its value is:

 $value = d_{p-1} \times b^{p-1} + d_{m-2} \times b_{p-2} + \dots + d_2 \times b_2 + d_1 \times b + d_0 + d_{-1} \times b_{-1} + d_{-2} \times b_{-2} + \dots + d_{-g+1} \times b_{-g+1} + d_{-g} \times b_{-g}$

- Two's complement for fractional numbers:
 - $1.6875_{10} = 01.1011_2$
 - $-1.6875_{10} = 10.0101_{2}$

Sign extension

- increasing the number of bits of a binary number while preserving the number's sign (positive/negative) and value
- done by appending digits to the most significant side of the number
- Example:
 - Write +6 and –6 as 2's complement
 - 0110 and 1010
 - Sign extend to 8-bit bytes
 - 00000110 and 11111010

Still...

- Can't infer a representation from a number
 - 11001 is 25 (unsigned)
 - 11001 is –9 (sign magnitude)
 - 11001 is -6 (ones complement)
 - 11001 is -7 (twos complement)

Summary

- Positional notation
- Binary/Octal/Decimal/Hexadecimal numbers
- Negative numbers
 - Sign-and-magnitude
 - Ones-complement
 - Twos-complement
- Arithmetic operations
- Representing fractional numbers