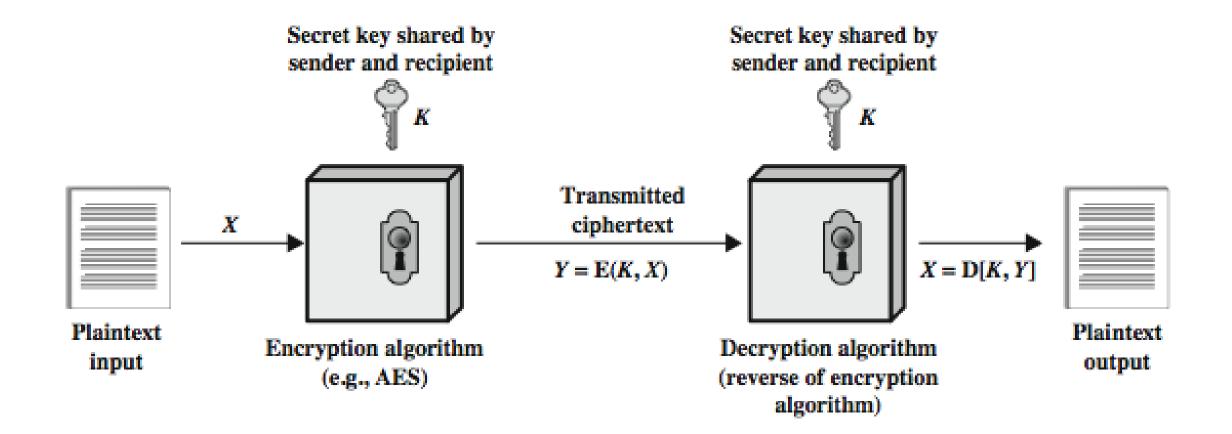
Classical Encryption Techniques

ITC 3093 Principles of Computer Security

Based on Cryptography and Network Security by William Stallings and Lecture slides by Lawrie Brown

Symmetric Encryption

- Also called, conventional / private-key / single-key
- Sender and recipient share a common key
- All classical encryption algorithms are private-key
- Prior to invention of public-key in 1970's, this was the only type
- and by far most widely used


2

Some Basic Terminology

- plaintext original message
- **cipher** algorithm to transform plaintext to ciphertext
- encipher (encrypt) converting plaintext to ciphertext
- cryptography study of encryption principles/methods
- cryptology field of both cryptography and cryptanalysis

- ciphertext coded message
- **key** info used in cipher known only to sender/receiver
- **decipher** (**decrypt**) recovering ciphertext from plaintext
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:
 - Y = E(K, X)
 - X = D(K, Y)
- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- can characterize cryptographic system by:
 - type of encryption operations used
 - substitution
 - transposition
 - product
 - number of keys used
 - single-key or private
 - two-key or public
 - way in which plaintext is processed
 - block
 - stream

Cryptanalysis

- objective to recover key not just message
- general approaches:
 - cryptanalytic attack
 - brute-force attack
- if either succeed all key use compromised

Cryptanalytic Attacks

- ciphertext only
 - only know algorithm & ciphertext, is statistical, know or can identify plaintext
- known plaintext
 - know/suspect plaintext & ciphertext
- chosen plaintext
 - select plaintext and obtain ciphertext
- chosen ciphertext
 - select ciphertext and obtain plaintext
- chosen text
 - select plaintext or ciphertext to en/decrypt

More Definitions

unconditional security

 no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

computational security

• given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs		Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ µs	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs	$= 5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ µs	$= 5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s$	$= 6.4 \times 10^{12}$ years	6.4×10^6 years

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

11

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:
 - meet me after the toga party
 - PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

• can define transformation as:

a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

mathematically give each letter a number

abcdefghij k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

• then have Caesar cipher as:

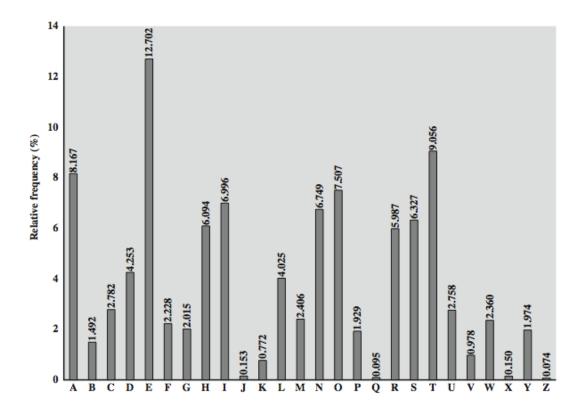
 $c = E(k, p) = (p + k) \mod (26)$ $p = D(k, c) = (c - k) \mod (26)$

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
 - A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- e.g. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long


Plain Cipher	abcdefghijklmnopqrstuvwxyz DKVQFIBJWPESCXHTMYAUOLRGZN
Plaintext Ciphertext	ifwewishtoreplaceletters WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- now have a total of $26! = 4 \times 10^{26}$ keys
- with so many keys, might think is secure
- but would be WRONG!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are redundant
 - e.g. "th Ird s m shphrd shll nt wnt"
- letters are not equally commonly used
 - in English E is by far the most common letter
 - followed by T,R,N,I,O,A,S
 - other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for
 202 Various languages
 Based on Cryptogram Stallings and L

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9th century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

Example Cryptanalysis

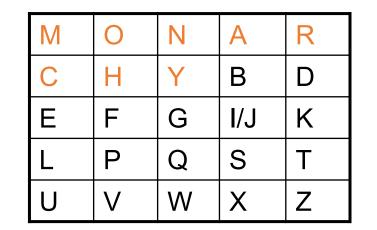
• given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies (see text)
- guess P & z are e and t
- guess zw is th and hence zwp is the
- proceeding with trial and error finally get:
 it was disclosed yesterday that several informal but
 direct contacts have been made with political
 representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the **Playfair Cipher** is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair


Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (without duplicates)
- fill rest of matrix with other letters (with I/J used as a single letter)
- e.g. using the keyword MONARCHY

Μ	0	Ν	Α	R
С	Н	Υ	В	D
E	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	Х	Z

Encrypting and Decrypting

- Plaintext is encrypted two letters at a time:
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - eg. "balloon" encrypts as "ba lx lo on"

- 2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - eg. "ar" encrypts as "RM"
- 3. if both letters fall in the same column, replace each with the letter below it (wrapping to top from bottom)
 - eg. "mu" encrypts to "CM"
- 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair
 - eg. "hs" encrypts to "BP", and "ea" to "IM" or "JM"

Security of Playfair Cipher

- security much improved over monoalphabetic
- since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years
 - eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

polyalphabetic substitution ciphers

- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher
- effectively multiple Caesar ciphers
- key is multiple letters long $\mathbf{K} = \mathbf{k}_1 \ \mathbf{k}_2 \ \dots \ \mathbf{k}_d$
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

Example of Vigenère Cipher

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a Caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword deceptive

key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D D E F G H I J K L M N O P Q R S T U V W X Y Z A IJKLMNOPQRSTUVWXYZA F F G H I J K L M N O P Q R S T U V W X Y Z A K L M N O P Q R S T U V W X Y Z A K L M N O P Q R S T U V W X Y Z A LMNOPQRSTUVWXYZA MNOPORSTUVWXYZA BC O P Q R S T U V W X Y Z A B C D E F G H I J L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M M N O P Q R S T U V W X Y Z A B C D E F G H N N O P OR S T U V W X Y Z A B C D E F G H O O P Q R S T U V W X Y Z A B C D E F G H I P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U WWXYZABCDEFGHIJKLMNOPQRSTUV X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
 - see if look monoalphabetic or not
- if not, then need to determine number of alphabets (by determining the length of the keyword), since then can attack each

Kasiski Method

- method developed by Babbage / Kasiski
- repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- which results in the same ciphertext
- of course, could also be random fluke
- e.g. repeated "VTW" in previous example
- suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- ideally want a key as long as the message
- Vigenère proposed the autokey cipher
- with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- use these in turn on the rest of the message
- but still have frequency characteristics to attack
- e.g. given key **deceptive**

key: deceptivewearediscoveredsav plaintext: wearediscoveredsaveyourself ciphertext: ZICVTWONGKZEIIGASXSTSLVVWLA

Stallings and Lecture slides by Lawrie Brown

G H I J K L M N O P Q R S T U V W X Y Z FGHIJKLMNOPQRSTU RSTU MNOPQRSTUVW BCD GH ΜN Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

29

Vernam Cipher

- ultimate defense is to use a key as long as the plaintext
- with no statistical relationship to it
- invented by AT&T engineer Gilbert Vernam in 1918
- originally proposed using a very long but eventually repeating key

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext & any ciphertext there exists a key mapping one to other
- can only use the key **once** though
- problems in generation & safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as:

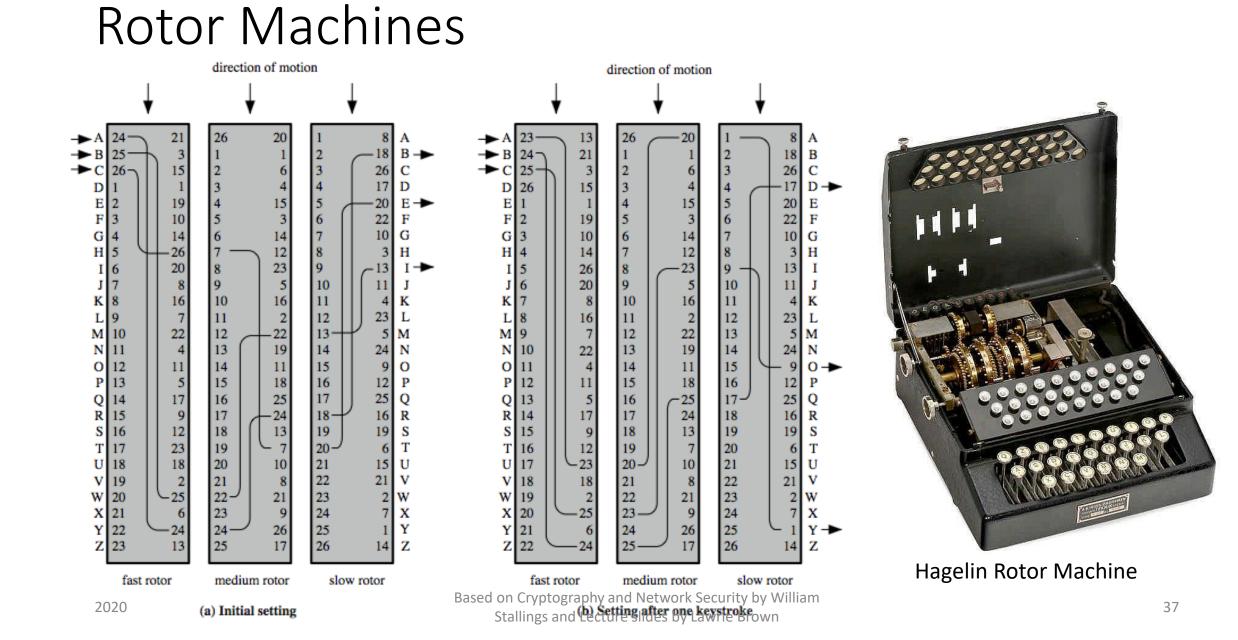
mematrhtgpry etefeteoaat

• giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- is a more complex transposition
- write letters of message out in rows over a specified number of columns
- reorder the columns according to some key before reading off the rows


Key :	4 3 1 2 5 6 7
Plaintext :	attackp
	ostpone
	duntilt
	woamxyz
Ciphertext:	TTNA APTM TSUO AODW COIX KNLY PETZ

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Rotor Machines

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have 26³=17576 alphabets

Steganography

- an alternative to encryption
- hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- has drawbacks
 - high overhead to hide relatively few info bits
- advantage is can obscure encryption use

Steganography

- Various other techniques
 - Character marking
 - Selected letters of printed or typewritten text are overwritten in pencil.
 - Invisible ink:
 - A number of substances can be used for writing but leave no visible.
 - Pin punctures:
 - Small pin punctures on selected letters are ordinarily not.
- Modern versions include
 - Embedding multiple content types within a single file
 - Covertly embedding malware code payloads in image files

Summary

- classical cipher techniques and terminology
- monoalphabetic substitution ciphers
- cryptanalysis using letter frequencies
- Playfair cipher
- polyalphabetic ciphers
- transposition ciphers
- product ciphers and rotor machines
- stenography