Assembly Language Programming

ICT 2203 Computer Architecture

Based on Computer Organization and Architecture, 6 Edition, by William Stallings

High and Low Level Languages

e C, C++, Java, Basic and the likes are all high level languages.

* They are machine independent.

* Assembler language is a low level language.

e Each different computer architecture has its own assembler language.

* The machine dependent compilers translate the high level language
to machine language.

Microcode

* Assembler or machine language is the lowest level access a
programmer has to the hardware.

* Internally, the machine language is implemented with microcode.

 Microcode is a series of instruction words that turn switches on and
off to implement each machine language instruction.

Compilers

* A compiler translates a high level language, such as C or C++, into
machine language.

* Each line of a high level language usually produces many machine
Instructions.

* Compilers can rearrange the instructions to produce optimal code.

Compiled Results

/I C++ or Java method /I Portion of same method in assembler
N : mov eax, PTR hand+32
!nt |_sflush(void) { 2dd eax. 117

int I, ok; mov PTR ok[ebp], eax

ok = FLUSHBASE + hand[4].face - 5; mov PTRi[ebp], 0

jmp SHORT label4

for (i=0;i<4;i++) label3: mov eax, PTR i[ebp]

if (hand[i].suit I= hand[i+1].suit) add eax, 1
ok = 0: mov PTR i[ebp], eax
_ labeld: cmp PTR i[ebp], 4
return ok ige SHORT label2
} mov eax, PTR i[ebp]
mov ecx, PTR i[ebp]
mov edx, PTR hand[eax*8+4]
cmp edx, PTR hand[ecx*8+12]
je SHORT label1
mov PTR ok[ebp], O
label1: jmp SHORT label3

label2: mov eax, PTR ok[ebp]

Architecture Specific

 The same C++, Fortran, Pascal or Java source code can be compiled on
any architecture.

* When executed, it will give the same results.

e Each architecture has its own assembler language.

* Assembler for one type of machine will not run on another machine.
* Assembler language is a simplified way of writing machine language.

Writing Assembler

* You need an assembler program that will translate your assembler
source into machine language.

* You can use the Inline Assembler in Microsoft Visual Studio to embed
assembly-language instructions directly in your C and C++ source
programs.

__asm {
assembler code here

}

* More details on using inline assembler are at:
 https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler

https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler

Assembler Programmer’s Model of Processor

* Registers
* Everything moves through the registers
* Arithmetic appears to occur in the registers.

* Status Register

* Updated automatically by most instructions
 Status bits are the basis for jumps

* Instructions and data are in memory
* The assembler program deals with addresses

Registers

* Registers are high speed, temporary storage in the processor.
* Some registers you can manipulate directly with assembler.

* The number of registers varies with the architecture.

 The Pentium has 8. IBM mainframes have 16, Itanium has 32.

* In some architectures, all registers are the same. In others, registers
are specialized.

Registers Do Everything

* All data moves through the registers
* Register to register instructions
* Memory to register instructions
 Memory to memory instructions (rare).

* Registers can hold addresses.

* Instructions accessing data in memory, can use an index register to
specify the address

10

Changing Names

* The first IBM PC had an Intel 8088 with 16 bit registers.
* The registers were named AX, BX, etc.

* When Intel extended the processor to 32 bit registers, they called the
longer registers EAX, EBX, etc.

e AX is the lower 16 bits of EAX.

 AH and AL are the high and low byte of the 16 bit register, now bytes
3 & 4.

Intel Registers

RAX

E A AX AL

g Taint 64 bits
: : - Taint 32 bits
L Taint 16 bits
— P Taint 08 hits

* The Intel Pentium has eight 32-bit general- purpose registers

General-Purpose Registers

31 1615 87 0 16-bit
AH AL AX
BH BL BX
CH CL CX
DH DL DX
BP
S|
DI
SP

32-bit

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

General use, division only in EAX
General use

General use

General use

Base pointer

Source pointer

Destination pointer

Stack pointer

12

General or Specialized

* In some architectures all of the registers have the same functionality.
In other machines the registers each have a specific purpose.

* The Intel registers have special purposes, although most can do
several operations.
« EAX Accumulator for arithmetic
EBX Pointer to data
ECX Counter for loop operations
EDX /O pointer
ESP Stack pointer

Load and Store

* A Load instruction copies a value from memory into a register.
* (Reads memory)

* A Store instruction copies a value from a register into memory.
e (Writes memory)

e mov for both load and store.

mov |Instruction

* The mov instruction moves data between memory and a register or
between two registers.

e The format s,

mov destination, source

* where destination and source can be
* register, memory to load data into a register
* memory, register to store data into memory
* register, register to move data between regs

Assignment Statements

int cat=3, dog=5;
short bird=2, worm=7;
char cow=41, goat=75; //note: char is one byte integer
_asm {
mov eax, cat ; dog = cat

mov dog, eax

mov c¢x, bird // worm = bird

mov worm, cCX

mov bl, goat /* cow = goat */

mov cow, bl

Data Types

* Hardware Data Types » Software Data Types
* long, int and short * All other data types are created by
* (8, 4 & 2 bytes) software
* float and double e strings
* (4 & 8 bytes) * objects
* char or byte e boolean
* (1 byte) .

multi-dimensional arrays

Integer data types can be signed
or unsigned

Arithmetic and Logical Instructions

mnemonic operation

ADD
SUB
MUL
IMUL
DIV
IDIV
AND
OR

Add

Subtract
Unsigned Multiply
Signed Multiply
Unsigned Divide
Signed Divide
Logical AND
Logical OR

18

Arithmetic Example 1

int dog=3, cat=4, bird=5;

_asm { //bird=dog + cat;
mov eax,dog
add eax,cat

mov bird,eax

19

Arithmetic Example 2

int dog=3, cat=4, bird=5,
_asm { //cow =dog + cat - bird,;
mov eax,dog
add eax,cat

sub eax,bird

mov COwW, eax

COW ;

20

What value is in EAX at the end?

int dog=4, cat=3,

bird=5;

_asm {
mov eax,dog
sub eax,cat
mov bird,eax

oK OO~
A WN =

21

Increment and Decrement

* The inc and dec instructions are one of the few that can run on
memory locations without using the registers.

* You can increment or decrement the value in a register or memory
location

inc eax
dec memoryAddr

22

Big Operands

* Multiplication and Division use two registers to store a 64 bit value.

* A number is stored in EDX : EAX with the most significant bits in the
EDX register and the least significant bits in EAX.

Multiplication

* The imul signed multiply instruction has three forms.
* Multiply memory * EAX .

imul memory
* Multiply memory * register.

imul reg, memory

* Multiply the value in the memory location times the constant and
store the result in the register .

imul reg, memory, const

Division

* The 64 bit number in the EDX : EAX pair of registers is divided by the
32 bit value in a memory location or another register.

* The resulting quotient is stored in EAX

* The resulting remainder is stored in EDX

e Since the EDX : EAX registers are always used, you do not have to
specify them.

idiv memoryAddr

Arithmetic Examples 3 & 4

int dog=3, cat=4, bird=5, cow;

_asm { //cow =dog " cat/ bird;

mov eax,dog
imul cat int dog=3, cat=4, bird=5, cow;
idiv bird _asm { //cow =dog % cat - bird;
mov Ccow,eax mov eax,dog

} mov edx, 0 ; clear EDX

idiv cat
sub edx,bird

mov cow, edx

26

Shifts

* The shift instructions can shift the values in a register or memory
location.

* The SHR and SHL instructions shift the bits right or left by the
specified number of bits.

* The SAR and SAL instructions shift the bit right or left, but not the
sign bit.

* The shift count can be a constant or the ¢l reg.
* sar eax, 5
* shl eax, cl

Shift Example

int dog=3;

_asm {
mov
sal

Sar

eax,dog
eax, 2

eax, 1l

L]
r

.
r

L]
r

eax

eax

eax

12

28

Learn Assembly Language Programming

e Assembly Programming Tutorial
* https://www.tutorialspoint.com/assembly programming/index.htm

* Compile and Execute Assembly Online
* https://www.tutorialspoint.com/compile assembly online.php

* Online Assembler - NASM Compiler IDE
* https://www.jdoodle.com/compile-assembler-nasm-online/

29

https://www.tutorialspoint.com/assembly_programming/index.htm
https://www.tutorialspoint.com/compile_assembly_online.php
https://www.jdoodle.com/compile-assembler-nasm-online/

Next:

Multicores, Multiprocessors, and Clusters

30

