
Assembly Language Programming
ICT 2203 Computer Architecture

Based on Computer Organization and Architecture, 6th Edition, by William Stallings

1

High and Low Level Languages

• C, C++, Java, Basic and the likes are all high level languages.

• They are machine independent.

• Assembler language is a low level language.

• Each different computer architecture has its own assembler language.

• The machine dependent compilers translate the high level language
to machine language.

2

Microcode

• Assembler or machine language is the lowest level access a
programmer has to the hardware.

• Internally, the machine language is implemented with microcode.

• Microcode is a series of instruction words that turn switches on and
off to implement each machine language instruction.

3

Compilers

• A compiler translates a high level language, such as C or C++, into
machine language.

• Each line of a high level language usually produces many machine
instructions.

• Compilers can rearrange the instructions to produce optimal code.

4

Compiled Results

5

Architecture Specific

• The same C++, Fortran, Pascal or Java source code can be compiled on
any architecture.

• When executed, it will give the same results.

• Each architecture has its own assembler language.

• Assembler for one type of machine will not run on another machine.

• Assembler language is a simplified way of writing machine language.

6

Writing Assembler

• You need an assembler program that will translate your assembler
source into machine language.

• You can use the Inline Assembler in Microsoft Visual Studio to embed
assembly-language instructions directly in your C and C++ source
programs.

__asm {

assembler code here

}

• More details on using inline assembler are at:
• https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler

7

https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler

8

Assembler Programmer’s Model of Processor

• Registers
• Everything moves through the registers

• Arithmetic appears to occur in the registers.

• Status Register
• Updated automatically by most instructions

• Status bits are the basis for jumps

• Instructions and data are in memory
• The assembler program deals with addresses

8

Registers

• Registers are high speed, temporary storage in the processor.

• Some registers you can manipulate directly with assembler.

• The number of registers varies with the architecture.

• The Pentium has 8. IBM mainframes have 16, Itanium has 32.

• In some architectures, all registers are the same. In others, registers
are specialized.

9

Registers Do Everything

• All data moves through the registers
• Register to register instructions

• Memory to register instructions

• Memory to memory instructions (rare).

• Registers can hold addresses.

• Instructions accessing data in memory, can use an index register to
specify the address

10

Changing Names

• The first IBM PC had an Intel 8088 with 16 bit registers.

• The registers were named AX, BX, etc.

• When Intel extended the processor to 32 bit registers, they called the
longer registers EAX, EBX, etc.

• AX is the lower 16 bits of EAX.

• AH and AL are the high and low byte of the 16 bit register, now bytes
3 & 4.

11

Intel Registers

• The Intel Pentium has eight 32-bit general- purpose registers

12

General or Specialized

• In some architectures all of the registers have the same functionality.
In other machines the registers each have a specific purpose.

• The Intel registers have special purposes, although most can do
several operations.
• EAX Accumulator for arithmetic

• EBX Pointer to data

• ECX Counter for loop operations

• EDX I/O pointer

• ESP Stack pointer

13

Load and Store

• A Load instruction copies a value from memory into a register.
• (Reads memory)

• A Store instruction copies a value from a register into memory.
• (Writes memory)

• mov for both load and store.

14

mov Instruction

• The mov instruction moves data between memory and a register or
between two registers.

• The format is,

mov destination, source

• where destination and source can be
• register, memory to load data into a register

• memory, register to store data into memory

• register, register to move data between regs

15

Assignment Statements

16

Data Types

• Hardware Data Types
• long, int and short

• (8, 4 & 2 bytes)

• float and double
• (4 & 8 bytes)

• char or byte
• (1 byte)

• Integer data types can be signed
or unsigned

• Software Data Types
• All other data types are created by

software

• strings

• objects

• boolean

• multi-dimensional arrays

17

Arithmetic and Logical Instructions

18

Arithmetic Example 1

19

Arithmetic Example 2

20

What value is in EAX at the end?

21

Increment and Decrement

• The inc and dec instructions are one of the few that can run on
memory locations without using the registers.

• You can increment or decrement the value in a register or memory
location

inc eax

dec memoryAddr

22

Big Operands

• Multiplication and Division use two registers to store a 64 bit value.

• A number is stored in EDX:EAX with the most significant bits in the
EDX register and the least significant bits in EAX.

23

Multiplication

• The imul signed multiply instruction has three forms.

• Multiply memory * EAX .

imul memory

• Multiply memory * register.

imul reg, memory

• Multiply the value in the memory location times the constant and
store the result in the register .

imul reg, memory, const

24

Division

• The 64 bit number in the EDX:EAX pair of registers is divided by the
32 bit value in a memory location or another register.

• The resulting quotient is stored in EAX

• The resulting remainder is stored in EDX

• Since the EDX:EAX registers are always used, you do not have to
specify them.

idiv memoryAddr

25

Arithmetic Examples 3 & 4

26

Shifts

• The shift instructions can shift the values in a register or memory
location.

• The SHR and SHL instructions shift the bits right or left by the
specified number of bits.

• The SAR and SAL instructions shift the bit right or left, but not the
sign bit.

• The shift count can be a constant or the cl reg.
• sar eax, 5

• shl eax, cl

27

Shift Example

28

Learn Assembly Language Programming

29

• Assembly Programming Tutorial
• https://www.tutorialspoint.com/assembly_programming/index.htm

• Compile and Execute Assembly Online
• https://www.tutorialspoint.com/compile_assembly_online.php

• Online Assembler - NASM Compiler IDE
• https://www.jdoodle.com/compile-assembler-nasm-online/

https://www.tutorialspoint.com/assembly_programming/index.htm
https://www.tutorialspoint.com/compile_assembly_online.php
https://www.jdoodle.com/compile-assembler-nasm-online/

Next:
Multicores, Multiprocessors, and Clusters

30

