
Input/Output
ICT 2203 Computer Architecture

Partially based on Computer Organization and Architecture 8th Edition by William Stallings

1

Input Devices

• Keyboard

• Mouse

• Scanner

• Game Controller

2

Output Devices

• Monitor

• Printers

• Disk Drive

• Speakers

3

Input and Output devices

• Modem

• Network Interface Card

• Portable storage drives

• Touchscreen display

4

Input/Output Problems

• Wide variety of peripherals
• Delivering different amounts of data

• At different speeds

• In different formats

• All slower than CPU and RAM

• Need I/O modules

5

I/O Module

• Interface to CPU and Memory

• Interface to one or more
peripherals

6

7

I/O Module Function

1. Control and Timing

2. CPU Communicating

3. Device Communication

4. Data Buffering

5. Error Detection

8

I/O Steps

• CPU checks I/O module device status

• I/O module returns status

• If ready, CPU requests data transfer

• I/O module gets data from device

• I/O module transfers data to CPU

• Variations for output, DMA, etc.

9

I/O Module Decisions

• Hide or reveal device properties to CPU

• Support multiple or single device

• Control device functions or leave for CPU

• Also O/S decisions
• e.g. Unix treats everything it can as a file

10

Input Output Techniques

• Programmed I/O
• The CPU issues a command then waits for I/O operations to be complete.

• The CPU is faster than the I/O module then method is wasteful.

• Interrupt Driven I/O
• The CPU issues commands then proceeds with its normal work until interrupted by

I/O device on completion of its work.

• DMA (Direct Memory Access)
• Memory and I/O Module exchange data without involvement of CPU.

• CPU grants I/O module authority to read from or write to memory without
involvement.

• DMA module controls exchange of data between main memory and the I/O device.

11

Addressing I/O Devices

• Under programmed I/O data transfer is very like memory access (CPU
viewpoint)

• Each device given unique identifier

• CPU commands contain identifier (address)

12

I/O Mapping

• Memory mapped I/O
• Devices and memory share an address space

• I/O looks just like memory read/write

• No special commands for I/O
• Large selection of memory access commands available

• Isolated I/O
• Separate address spaces

• Need I/O or memory select lines

• Special commands for I/O
• Limited set

13

Programmed I/O

• CPU has direct control over I/O
• Sensing status
• Read/write commands
• Transferring data

• CPU waits for I/O module to complete operation

• Wastes CPU time

14

Programmed I/O - Basic Operation

• CPU requests I/O operation

• I/O module performs operation

• I/O module sets status bits

• CPU checks status bits periodically

• I/O module does not inform CPU directly

• I/O module does not interrupt CPU

• CPU may wait or come back later

15

Interrupt Driven I/O

• Overcomes CPU waiting

• No repeated CPU checking of device

• I/O module interrupts when ready

16

Interrupt Driven I/O - Basic Operation

• CPU issues read command

• I/O module gets data from
peripheral whilst CPU does
other work

• I/O module interrupts CPU

• CPU requests data

• I/O module transfers data

17

Simple Interrupt Processing

• Issue read command

• Do other work

• Check for interrupt at end of
each instruction cycle

• If interrupted:-

• Save context (registers)

• Process interrupt

• Fetch data & store

18

Design Issues

• How do you identify the module issuing the interrupt?

• How do you deal with multiple interrupts?
• i.e. an interrupt handler being interrupted

19

Identifying Interrupting Module

• Different line for each module
• PC

• Limits number of devices

• Software poll
• CPU asks each module in turn

• Slow

• Daisy Chain or Hardware poll
• Interrupt Acknowledge sent down

a chain

• Module responsible places vector
on bus

• CPU uses vector to identify
handler routine

• Bus Master
• Module must claim the bus before

it can raise interrupt

• e.g. PCI & SCSI

20

Multiple Interrupts

• Each interrupt line has a priority

• Higher priority lines can interrupt lower priority lines

• If bus mastering only current master can interrupt

21

Direct Memory Access

• Interrupt driven and programmed I/O
require active CPU intervention
• Transfer rate is limited
• CPU is tied up

• DMA is the answer
• Additional Module (hardware) on bus

• DMA controller takes over from CPU for I/O

22

DMA Operation - Basic Operation

• CPU tells DMA controller:

• Whether to Read or Write

• Address of the device to be addressed

• Starting address of memory block for data

• Amount of data to be transferred

• CPU carries on with other work

• DMA controller deals with transfer

• DMA controller sends interrupt when finished

23

DMA Transfer Cycle Stealing

• DMA controller takes over bus for a cycle

• Transfer of one word of data

• Not an interrupt
• CPU does not switch context

• CPU suspended just before it accesses bus
• i.e. before an operand or data fetch or a data write

• Slows down CPU but not as much as CPU doing transfer

24

DMA and Interrupt Breakpoints
During an Instruction Cycle

25

DMA Configurations (1)

• Single Bus, Detached DMA controller

• Each transfer uses bus twice
• I/O to DMA then DMA to memory

• CPU is suspended twice

26

DMA Configurations (2)

• Single Bus, Integrated DMA controller

• Controller may support >1 device

• Each transfer uses bus once
• DMA to memory

• CPU is suspended once 27

DMA Configurations (3)

• Separate I/O Bus

• Bus supports all DMA enabled devices

• Each transfer uses bus once
• DMA to memory

• CPU is suspended once 28

I/O Channels

• I/O devices getting more sophisticated

• e.g. 3D graphics cards

• CPU instructs I/O controller to do transfer

• I/O controller does entire transfer

• Improves speed
• Takes load off CPU

• Dedicated processor is faster

29

Next:
Interfacing

30

