Input/Output

ICT 2203 Computer Architecture

Partially based on Computer Organization and Architecture 8th Edition by William Stallings

Input Devices

e Keyboard

* Mouse

* Scanner

* Game Controller

Output Devices

* Monitor

* Printers

* Disk Drive
* Speakers

Plotter

Printer

.

L=

Speaker

Input and Output devices

* Modem input output
 Network Interface Card

Keyboard

* Portable storage drives

Optical pen

/ COiCWVD

Scanner g -l

[i . —

—

Bar code reader

Jaystick

* Touchscreen display

Input/Output Problems

* Wide variety of peripherals
* Delivering different amounts of data
* At different speeds
* In different formats

e All slower than CPU and RAM
* Need I/O modules

/O Module

* Interface to CPU and Memory

* Interface to one or more
peripherals

CPU
o Memory Graphics
Memory <::> Controller <::> Processor
SATA <::> <:::> audio
PATA <::> C(}I’:Eilgll{‘l‘ (:::} ethernet
USB<—> ——>PCI

South Bridge North Bridge

{

MNorthbridge

[memaory
oontnelier k)

inlernal
[P T 5

Southbridge

(0 controler

Flash ROM
(B10S)

/O Module Function

Address Lines

Control and Timing - Systen
ata Lines Bus

CPU Communicating

Device Communication

Control Lines

Data Buffering
Error Detection

/0 Module

Al S

Links to
peripheral
devices

/O Steps

* CPU checks I/O module device status

* |/O module returns status

* If ready, CPU requests data transfer
* |/O module gets data from device
* |/O module transfers data to CPU 5{

* Variations for output, DMA, etc.

Interface to
System Bus

~A—

Address

Data Registers

Status/Control Registers

Interface to

External Device

~A—

External
Device
Interface
Logic

Data

Status

Control

Lines

Control

Lines <

10
Logic

External
Device
Interface
Logic

Data

Status

Control

/O Module Decisions

* Hide or reveal device properties to CPU
e Support multiple or single device
e Control device functions or leave for CPU

e Also O/S decisions
* e.g. Unix treats everything it can as a file

10

Input Output Technigues

* Programmed I/0O
* The CPU issues a command then waits for I/O operations to be complete.
 The CPU is faster than the I/O module then method is wasteful.

* Interrupt Driven I/O

* The CPU issues commands then proceeds with its normal work until interrupted by
|/O device on completion of its work.

* DMA (Direct Memory Access)

* Memory and |/O Module exchange data without involvement of CPU.

e CPU grants I/O module authority to read from or write to memory without
involvement.

 DMA module controls exchange of data between main memory and the 1/O device.

Addressing 1/0 Devices

* Under programmed 1/O data transfer is very like memory access (CPU
viewpoint)

* Each device given unique identifier
 CPU commands contain identifier (address)

12

/O Mapping

* Memory mapped I/O
* Devices and memory share an address space
* 1/O looks just like memory read/write

* No special commands for I/O
* Large selection of memory access commands available

* |solated I/O

e Separate address spaces
* Need I/O or memory select lines

* Special commands for I/O
* Limited set

Programmed |/0O

* CPU has direct control over 1I/O
* Sensing status
* Read/write commands
* Transferring data

* CPU waits for I/O module to complete operation
* Wastes CPU time

Issue Read
—» command tof|CPU — 1/O
I/0O module

Programmed |/O - Basic Operation

Read status
of IO
module

110 —- CPU

* CPU requests I/O operation

Error
condition

* |/O module performs operation
* |/O module sets status bits

Read word

from 1/O /O — CPU

* CPU checks status bits periodically Module

* |/O module does not inform CPU directly T
* |/O module does not interrupt CPU .

* CPU may wait or come back later

CPU — memory

Yes

Next instruction

(a) Programmed |/O 2

Interrupt Driven /0O

* Overcomes CPU waiting
* No repeated CPU checking of device
* |/O module interrupts when ready

16

Interrupt Driven I/O - Basic Operation

* CPU issues read command

* |/O module gets data from
peripheral whilst CPU does
other work

* |/O module interrupts CPU
* CPU requests data
* |/O module transfers data

Issue Read PU — I/O
—» command to Do something
/O module [I~~ Pelse

Read status |g. - - - Interrupt

of 110

module 110 - CPU
Error
condition

Read word

from I/O /O — CPU

Module

‘_erte lis CPU — memory

into memory

Yes

Next instruction
(b) Interrupt-driven 1/O

17

Simple Interrupt Processing

e |ssue read command
* Do other work

* Check for interrupt at end of
each instruction cycle
* If interrupted:-
e Save context (registers)
* Process interrupt
* Fetch data & store

Hardware

— A

Device controller or
other system hardwar
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment

of interrupt

Processor pushes PS
and PC onto control

stack

Processor loads ne
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process stat
information

Restore old PSW
and PC

18

Design Issues

* How do you identify the module issuing the interrupt?

* How do you deal with multiple interrupts?
* i.e. an interrupt handler being interrupted

19

ldentifying Interrupting Module

e Different line for each module
* PC
e Limits number of devices

e Software poll
 CPU asks each module in turn
e Slow

e Daisy Chain or Hardware poll

* Interrupt Acknowledge sent down
a chain

* Module responsible places vector
on bus

e CPU uses vector to identify
handler routine

* Bus Master

 Module must claim the bus before
it can raise interrupt

» e.g. PCI & SCSI

20

Multiple Interrupts

* Each interrupt line has a priority
* Higher priority lines can interrupt lower priority lines
* If bus mastering only current master can interrupt

21

Direct Memory Access

* Interrupt driven and programmed |/0O

Data
Count

Data
Register

Address
Register

require active CPU intervention Data Lines
* Transfer rate is limited
* CPU is tied up s Tnes <
* DMA is the answer DMA Acknowicdge -
* Additional Module (hardware) on bus e

Write

 DMA controller takes over from CPU for I/O

Control
Logic

22

DMA Operation - Basic Operation

e CPU tells DMA controller:

* Whether to Read or Write issue Read [JCPU > DMA =
. block commangl +D0 something
e Address of the device to be addressed ta O module else
* Starting address of memory block for data ST —
* Amount of data to be transferred Codue Moma s cpu
* CPU carries on with other work Next inbruction
* DMA controller deals with transfer (c) Direct memory access

* DMA controller sends interrupt when finished

23

DMA Transfer Cycle Stealing

 DMA controller takes over bus for a cycle
* Transfer of one word of data

* Not an interrupt
e CPU does not switch context

* CPU suspended just before it accesses bus
* i.e. before an operand or data fetch or a data write

* Slows down CPU but not as much as CPU doing transfer

24

Time

DMA and Interrupt Breakpoints
During an Instruction Cycle

EE—
Instruction Cycle
» y N
Processor | Processor | Processor | Processor | Processor | Processor
Cycle Cycle Cycle Cycle Cycle Cycle
| b_-ll b_-ll > b_-ll b_-i »
Fetch Decode Fetch Execute Store Process
Instruction | Instruction Operand | Instruction Result Interrupt
A A
DMA Interrupt
Breakpoints Breakpoint

25

DMA Configurations (1)

J N N e B

 Single Bus, Detached DMA controller

e Each transfer uses bus twice
* /O to DMA then DMA to memory

* CPU is suspended twice

26

DMA Configurations (2)

‘ P rocessor ‘ \

(b) Single-bos. Integrated DMA-LO

 Single Bus, Integrated DMA controller
e Controller may support >1 device

 Each transfer uses bus once
* DMA to memory

* CPU is suspended once

=
.

27

DMA Configurations (3)

Syvslem bos

/0y bos

(¢} LA bos

» Separate 1/0O Bus
* Bus supports all DMA enabled devices

e Each transfer uses bus once
* DMA to memory

* CPU is suspended once

28

Daia and
ackdiress chahhel

/O Channels] ——
e —
Conttul signal v
path w CPLU l'“.urrm.i.l ‘T l.':umrul.l F
* |/O devices getting more sophisticated Cb d\O
 e.g. 3D graphics cards . i
 CPU instructs I/O controller to do transfer “"™ =23 e
* |/O controller does entire transfer Conon dgna om0
* Improves speed _
* Takes load off CPU :If‘ﬂ'"“iﬂ %
* Dedicated processor is faster rmmm—o
A

{b) Multiplexor

Next:

Interfacing

