
CPU Functions
ICT 2203 Computer Architecture

Partially based on Computer Organization and Architecture 8th Edition by William Stallings

1

Computer Components: Top Level View

2

Components

• The Control Unit and the Arithmetic and Logic Unit
• Central Processing Unit

• Data and instructions need to get into the system and results out
• Input/output

• Temporary storage of code and results is needed
• Main memory

3

Central Processing Unit (CPU)

• Carries out the program’s instructions!
• Operates on data it finds in the computer’s memory.

• Includes all binary circuits that carry out arithmetic & logic
operations, reduced to a single IC.
• Also called Microprocessor

• CPU has four key parts that we will examine:
• Control Unit
• Arithmetic & Logic Unit
• Registers
• Clock
• And, of course, wires that connect everything together.

4

• Control Unit (CU):
• circuitry for coordinating machine’s activities. Controls sequence of

operations.

• Arithmetic & Logic Unit (ALU):
• circuitry to perform data manipulation (arithmetic & logic).

• Registers:
• Temporary storage areas. Holds information applicable to the current

operation.

• Clock:
• Triggers start and stop of all CPU operations. (heartbeat)

Central Processing Unit (CPU)

5

Program Concept

• Hardwired systems are inflexible

• General purpose hardware can do different tasks, given correct
control signals

• Instead of re-wiring, supply a new set of control signals

• For each operation a unique code is provided
• e.g. ADD, MOVE

• A common hardware segment accepts the code and issues the
control signals

• That is a programmable computer!

6

What is a program?

• A sequence of steps

• For each step, an arithmetic or logical operation is done

• For each operation, a different set of control signals is needed

7

Programming for a CPU

• What kind of code do programmers use?

• What kind of code does a CPU understand?

• So, what has to occur before the CPU can execute a source-code
program?

Translator
(Compiler)

High-level language
(source code)

Machine language
(object code)

8

Instruction Set

• CPUs support a set of very simple instructions that typically fall into
the following categories:
• Data movement (load, store, copy…)

• Arithmetic/logical (add, subtract, compare..)

• Program control (branch, halt…)

• Very primitive commands (operations) executed by the CPU
• logical structure

• These commands are implemented as electronic binary circuits
which can transform the 0s and 1s.
• physical structure

9

Instruction Meaning
STO Store data in a particular memory location

ADD Add two numbers together

SUB Subtract one number from another

MUL Multiply two numbers

DIV Divide two numbers

INC Increment a number by adding 1

CMP Compare two numbers to see if they are equal

JMP Jump to a specific position in the instruction code

Instruction Set

• Instructions are given to the processor in the form of a program, so it
knows what circuits to use, in what order; and from where the data
should be read or to where it should be stored.

10

Machine language

• Instructions are stored and processed in machine language, also
called microcode or machine code.

• A program consists of a sequence of instructions.

• Each instruction contains a fixed-length instruction code that:
• Identifies the operation to perform: op code

• Tells the CPU how to determine the operands

• For example:
• assume a 4-bit op-code + two 6-bit operands = one 16 bit instruction

11

Machine language

• Machine language consists solely of bit patterns.

• Machine language bit patterns are based directly on CPU’s instruction
set (on its binary circuits).

• CPU chip: designed to recognize certain bit patterns as representing
certain instructions, which correspond directly to certain available
binary circuits.

• Example: An ADD instruction in a 16-bit machine language:
• 0101 110011 111100

• Op-code: Operands: (RAM or Register addresses)

• 0101 110011 111100

12

Instruction Cycle

• Two steps:
• Fetch

• Execute

13

Fetch Cycle

• Program Counter (PC) holds address of next instruction to fetch

• Processor fetches instruction from memory location pointed to by PC

• Increment PC
• Unless told otherwise

• Instruction loaded into Instruction Register (IR)

• Processor interprets instruction and performs required actions

14

Execute Cycle

• Processor-memory
• data transfer between CPU and main memory

• Processor I/O
• Data transfer between CPU and I/O module

• Data processing
• Some arithmetic or logical operation on data

• Control
• Alteration of sequence of operations
• e.g. jump

• Combination of above

15

Example of
Program Execution

16

Instruction Cycle State Diagram

17

Interrupts

• Mechanism by which other modules (e.g. I/O) may interrupt normal
sequence of processing

• Program
• e.g. overflow, division by zero

• Timer
• Generated by internal processor timer
• Used in pre-emptive multi-tasking

• I/O
• from I/O controller

• Hardware failure
• e.g. memory parity error

18

Interrupt Cycle

• Added to instruction cycle

• Processor checks for interrupt
• Indicated by an interrupt signal

• If no interrupt, fetch next instruction

• If interrupt pending:
• Suspend execution of current program
• Save context
• Set PC to start address of interrupt handler routine
• Process interrupt
• Restore context and continue interrupted program

19

Instruction Cycle with Interrupts

20

Program Timing
Short I/O Wait

21

Program Timing
Long I/O Wait

22

Instruction Cycle (with Interrupts)

23

Connecting

• All the units must be connected

• Different type of connection for
different type of unit
• Memory

• Input/Output

• CPU

24

Memory Connection

• Receives and sends data

• Receives addresses (of locations)

• Receives control signals
• Read

• Write

• Timing

25

Input/Output Connection

• Similar to memory from
computer’s viewpoint

• Output
• Receive data from computer

• Send data to peripheral

• Input
• Receive data from peripheral

• Send data to computer

• Receive control signals from
computer

• Send control signals to
peripherals
• e.g. spin disk

• Receive addresses from
computer
• e.g. port number to identify

peripheral

• Send interrupt signals (control)

26

CPU Connection

• Reads instruction and data

• Writes out data (after processing)

• Sends control signals to other units

• Receives (& acts on) interrupts

27

Buses

• There are a number of possible interconnection systems

• A communication pathway connecting two or more devices

• Usually broadcast

• Often grouped
• A number of channels in one bus

• e.g. 32 bit data bus is 32 separate single bit channels

• Power lines may not be shown

• Single and multiple BUS structures are most common
• Control/Address/Data bus (PC)

28

Buses

• Data Bus:
• Carries data

• Both “data” and “instruction”

• Width is a key determinant of
performance
• 8, 16, 32, 64 bit

• Control Bus:
• Control and timing information

• Memory read/write signal

• Interrupt request

• Clock signals

• Address Bus:
• Identify the source or destination

of data
• e.g. CPU needs to read an instruction

(data) from a given location in
memory

• Bus width determines maximum
memory capacity of system
• e.g. 8080 has 16 bit address bus

giving 64k address space

29

Next:
Memory

30

